IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6390-d455667.html
   My bibliography  Save this article

Alcohol Fuels for Spark-Ignition Engines: Performance, Efficiency, and Emission Effects at Mid to High Blend Rates for Ternary Mixtures

Author

Listed:
  • James W. G. Turner

    (Institute for Advanced Automotive Propulsion Systems, University of Bath, Bath, Somerset BA2 7AY, UK)

  • Andrew G. J. Lewis

    (Institute for Advanced Automotive Propulsion Systems, University of Bath, Bath, Somerset BA2 7AY, UK)

  • Sam Akehurst

    (Institute for Advanced Automotive Propulsion Systems, University of Bath, Bath, Somerset BA2 7AY, UK)

  • Chris J. Brace

    (Institute for Advanced Automotive Propulsion Systems, University of Bath, Bath, Somerset BA2 7AY, UK)

  • Sebastian Verhelst

    (Department of Electromechanical, Systems and Metal Engineering, Campus UFO, Ghent University, T4, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium)

  • Jeroen Vancoillie

    (Department of Electromechanical, Systems and Metal Engineering, Campus UFO, Ghent University, T4, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium)

  • Louis Sileghem

    (Department of Electromechanical, Systems and Metal Engineering, Campus UFO, Ghent University, T4, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium)

  • Felix C. P. Leach

    (Departments of Chemistry and Engineering Science, University of Oxford, Oxford OX1 3PJ, UK)

  • Peter P. Edwards

    (Departments of Chemistry and Engineering Science, University of Oxford, Oxford OX1 3PJ, UK)

Abstract

This paper follows on from an earlier publication on high-blend-rate binary gasoline-alcohol mixtures and reports results for some equivalent ternary fuels from several investigation streams. In the present work, new findings are presented for high-load operation in a dedicated boosted multi-cylinder engine test facility, for operation in modified production engines, for knock performance in a single-cylinder test engine, and for exhaust particulate emissions at part load using both the prototype multi-cylinder engine and a separate single-cylinder engine. The wide variety of test engines employed have several differences, including their fuel delivery strategies. This range of engine specifications is considered beneficial with regard to the “drop-in fuel” conjecture, since the results presented here bear out the contention, already established in the literature, that when specified according to the known ternary blending rules, such fuels fundamentally perform identically to their binary equivalents in terms of engine performance, and outperform standard gasolines in terms of efficiency. However, in the present work, some differences in particulate emissions performance in direct-injection engines have been found at light load for the tested fuels, with a slight increase in particulate number observed with higher methanol contents than lower. A hypothesis is developed to explain this result but in general it was found that these fuels do not significantly affect PN emissions from such engines. As a result, this investigation supplies further evidence that renewable fuels can be introduced simply into the existing vehicle fleet, with the inherent backwards compatibility that this brings too.

Suggested Citation

  • James W. G. Turner & Andrew G. J. Lewis & Sam Akehurst & Chris J. Brace & Sebastian Verhelst & Jeroen Vancoillie & Louis Sileghem & Felix C. P. Leach & Peter P. Edwards, 2020. "Alcohol Fuels for Spark-Ignition Engines: Performance, Efficiency, and Emission Effects at Mid to High Blend Rates for Ternary Mixtures," Energies, MDPI, vol. 13(23), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6390-:d:455667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    2. Turner, J.W.G. & Pearson, R.J. & Dekker, E. & Iosefa, B. & Johansson, K. & ac Bergström, K., 2013. "Extending the role of alcohols as transport fuels using iso-stoichiometric ternary blends of gasoline, ethanol and methanol," Applied Energy, Elsevier, vol. 102(C), pages 72-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Catapano & Silvana Di Iorio & Agnese Magno & Paolo Sementa & Bianca Maria Vaglieco, 2022. "Measurement of Sub-23 nm Particles Emitted from PFI/DI SI Engine Fueled with Oxygenated Fuels: A Comparison between Conventional and Novel Methodologies," Energies, MDPI, vol. 15(6), pages 1-14, March.
    2. Silvana Di Iorio & Francesco Catapano & Agnese Magno & Paolo Sementa & Bianca Maria Vaglieco, 2023. "The Potential of Ethanol/Methanol Blends as Renewable Fuels for DI SI Engines," Energies, MDPI, vol. 16(6), pages 1-15, March.
    3. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    3. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    4. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    5. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    6. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2019. "Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process," Renewable Energy, Elsevier, vol. 135(C), pages 1303-1313.
    7. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    8. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    9. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    10. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    11. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
    12. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
    14. Peter N. Ciesielski & M. Brennan Pecha & Vivek S. Bharadwaj & Calvin Mukarakate & G. Jeremy Leong & Branden Kappes & Michael F. Crowley & Seonah Kim & Thomas D. Foust & Mark R. Nimlos, 2018. "Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    15. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    16. Mikulski, Maciej & Ambrosewicz-Walacik, Marta & Duda, Kamil & Hunicz, Jacek, 2020. "Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel," Renewable Energy, Elsevier, vol. 148(C), pages 739-755.
    17. Vafamehr, Hassan & Cairns, Alasdair & Sampson, Ojon & Koupaie, Mohammadmohsen Moslemin, 2016. "The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine," Applied Energy, Elsevier, vol. 179(C), pages 687-697.
    18. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6390-:d:455667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.