IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6341-d454430.html
   My bibliography  Save this article

Review of Methods Used for Selecting Pumps as Turbines (PATs) and Predicting Their Characteristic Curves

Author

Listed:
  • Mario Amelio

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Ponte Bucci, Cube 44C, 87036 Rende, Italy)

  • Silvio Barbarelli

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Ponte Bucci, Cube 44C, 87036 Rende, Italy)

  • Domenico Schinello

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Ponte Bucci, Cube 44C, 87036 Rende, Italy)

Abstract

The use of Pumps As Turbines (PATs) can be the best solution for exploiting small hydraulic resources. Pump manufacturers do not provide the performances of their machines running in reverse mode, thus several authors developed appropriate prediction models. Some of them can only correlate the pump Best Efficiency Point (BEP) to the PAT corresponding one; other ones are able to obtain the characteristic curves. In this paper, a review of these methodologies is presented with the aim to find the best strategy that allows a designer of a small hydropower plant to select the PAT to be used and to predict its characteristic curves. The study also highlights the possibility of disassembling some models in order to merge the best parts in a more reliable strategy.

Suggested Citation

  • Mario Amelio & Silvio Barbarelli & Domenico Schinello, 2020. "Review of Methods Used for Selecting Pumps as Turbines (PATs) and Predicting Their Characteristic Curves," Energies, MDPI, vol. 13(23), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6341-:d:454430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emma Frosina & Dario Buono & Adolfo Senatore, 2017. "A Performance Prediction Method for Pumps as Turbines (PAT) Using a Computational Fluid Dynamics (CFD) Modeling Approach," Energies, MDPI, vol. 10(1), pages 1-19, January.
    2. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2017. "Energy Production by Means of Pumps As Turbines in Water Distribution Networks," Energies, MDPI, vol. 10(10), pages 1-13, October.
    3. Barbarelli, S. & Amelio, M. & Florio, G., 2016. "Predictive model estimating the performances of centrifugal pumps used as turbines," Energy, Elsevier, vol. 107(C), pages 103-121.
    4. Lima, Gustavo Meirelles & Luvizotto, Edevar & Brentan, Bruno M., 2017. "Selection and location of Pumps as Turbines substituting pressure reducing valves," Renewable Energy, Elsevier, vol. 109(C), pages 392-405.
    5. Arriaga, Mariano, 2010. "Pump as turbine – A pico-hydro alternative in Lao People's Democratic Republic," Renewable Energy, Elsevier, vol. 35(5), pages 1109-1115.
    6. Yang, Sun-Sheng & Derakhshan, Shahram & Kong, Fan-Yu, 2012. "Theoretical, numerical and experimental prediction of pump as turbine performance," Renewable Energy, Elsevier, vol. 48(C), pages 507-513.
    7. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvio Barbarelli & Vincenzo Pisano & Mario Amelio, 2022. "Development of a Predicting Model for Calculating the Geometry and the Characteristic Curves of Pumps Running as Turbines in Both Operating Modes," Energies, MDPI, vol. 15(7), pages 1-28, April.
    2. João M. R. Catelas & João F. P. Fernandes & Modesto Pérez-Sánchez & P. Amparo López-Jiménez & Helena M. Ramos & P. J. Costa Branco, 2024. "Energy Efficiency and Stability of Micro-Hydropower PAT-SEIG Systems for DC Off-Grids," Energies, MDPI, vol. 17(6), pages 1-25, March.
    3. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    4. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    5. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    6. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    2. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    3. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    4. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    5. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    6. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    7. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    8. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    9. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    10. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    11. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    12. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    13. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    14. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2018. "Comparison of Different Approaches to Predict the Performance of Pumps As Turbines (PATs)," Energies, MDPI, vol. 11(4), pages 1-17, April.
    15. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.
    16. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2022. "Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network," Energy, Elsevier, vol. 255(C).
    17. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    18. Yu, Wenjin & Zhou, Peijian & Miao, Zhouqian & Zhao, Haoru & Mou, Jiegang & Zhou, Wenqiang, 2024. "Energy performance prediction of pump as turbine (PAT) based on PIWOA-BP neural network," Renewable Energy, Elsevier, vol. 222(C).
    19. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    20. Rossi, Mosè & Comodi, Gabriele & Piacente, Nicola & Renzi, Massimiliano, 2020. "Energy recovery in oil refineries by means of a Hydraulic Power Recovery Turbine (HPRT) handling viscous liquids," Applied Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6341-:d:454430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.