IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6332-d454219.html
   My bibliography  Save this article

Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler

Author

Listed:
  • Sergio Paniagua

    (Department of Applied Chemistry and Physics, Chemical Engineering Area, Institute of Environment, Natural Resources and Biodiversity (IMARENABIO), University of León, 24071 León, Spain)

  • Alba Prado-Guerra

    (Department of Applied Chemistry and Physics, Chemical Engineering Area, Institute of Environment, Natural Resources and Biodiversity (IMARENABIO), University of León, 24071 León, Spain)

  • Ana Isabel Neto

    (Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Teresa Nunes

    (Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Luís Tarelho

    (Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Célia Alves

    (Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Luis Fernando Calvo

    (Department of Applied Chemistry and Physics, Chemical Engineering Area, Institute of Environment, Natural Resources and Biodiversity (IMARENABIO), University of León, 24071 León, Spain)

Abstract

Pollutants resulting from domestic combustion would have harmful effects on public health, causing disturbances in the atmosphere chemistry and the climate. In this work, the emissions from the combustion of pellets made of 80% poplar (organically fertilized) and 20% cereal straw ( Triticum aestivum ) have been analysed. Poplar wood from I-214 and AF-8 clones was obtained from fertilized and non-fertilized plots (CONTROL). Dairy wastewater treatment (MUD) and dehydrated sewage sludge (BIOSOLIDS) were the fertilizers employed. BIOSOLIDS-I214 pellets had lower quality standards, so its combustion was omitted. A flue gas sample was sampled together with the particles emitted. The I-214 MUD sample had the highest emitted CO value (1505 mg/MJ). Regarding HCl emission factors, there was a homogeneity in the results linked with the Cl content present in the raw material. A higher particle emission was associated with pellets with higher ash content. Particles were composed mainly for elemental carbon (26–80 mg/MJ), except I-214 MUD. I-214 pellets had the indicators of incomplete combustion and, therefore, major contaminants emission and major environmental impact. Thus, both the poplar clone and the organic fertilizer influenced the parameters and emissions analysed. Therefore, special attention must be paid to both characteristics.

Suggested Citation

  • Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6332-:d:454219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graham Palmer, 2019. "Renewables rise above fossil fuels," Nature Energy, Nature, vol. 4(7), pages 538-539, July.
    2. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    3. Gaurav, N. & Sivasankari, S. & Kiran, GS & Ninawe, A. & Selvin, J., 2017. "Utilization of bioresources for sustainable biofuels: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 205-214.
    4. Paniagua, S. & Escudero, L. & Escapa, C. & Coimbra, R.N. & Otero, M. & Calvo, L.F., 2016. "Effect of waste organic amendments on Populus sp biomass production and thermal characteristics," Renewable Energy, Elsevier, vol. 94(C), pages 166-174.
    5. Martin Lisý & Hana Lisá & David Jecha & Marek Baláš & Peter Križan, 2020. "Characteristic Properties of Alternative Biomass Fuels," Energies, MDPI, vol. 13(6), pages 1-17, March.
    6. Mian, Inamullah & Li, Xian & Dacres, Omar D. & Wang, Jianjiang & Wei, Bo & Jian, Yiming & Zhong, Mei & Liu, Jingmei & Ma, Fengyun & Rahman, Noor, 2020. "Combustion kinetics and mechanism of biomass pellet," Energy, Elsevier, vol. 205(C).
    7. Thomson, Harriet & Liddell, Christine, 2015. "The suitability of wood pellet heating for domestic households: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1362-1369.
    8. Lelis Gonzaga Fraga & João Silva & Senhorinha Teixeira & Delfim Soares & Manuel Ferreira & José Teixeira, 2020. "Influence of Operating Conditions on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysis," Energies, MDPI, vol. 13(11), pages 1-22, June.
    9. Fengli Zhang & Chen Li & Yajie Yu & Dana M. Johnson, 2019. "Resources and Future Availability of Agricultural Biomass for Energy Use in Beijing," Energies, MDPI, vol. 12(10), pages 1-14, May.
    10. Mohankumar, S. & Senthilkumar, P., 2017. "Particulate matter formation and its control methodologies for diesel engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1227-1238.
    11. Giuseppe Toscano & Vincenzo Alfano & Antonio Scarfone & Luigi Pari, 2018. "Pelleting Vineyard Pruning at Low Cost with a Mobile Technology," Energies, MDPI, vol. 11(9), pages 1-17, September.
    12. Anthony Ike Anukam & Jonas Berghel & Stefan Frodeson & Elizabeth Bosede Famewo & Pardon Nyamukamba, 2019. "Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality," Energies, MDPI, vol. 12(23), pages 1-22, November.
    13. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    14. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nataša Dragutinović & Isabel Höfer & Martin Kaltschmitt, 2021. "Fuel Improvement Measures for Particulate Matter Emission Reduction during Corn Cob Combustion," Energies, MDPI, vol. 14(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Lyes Bennamoun & Merlin Simo-Tagne & Macmanus Chinenye Ndukwu, 2020. "Simulation of Storage Conditions of Mixed Biomass Pellets for Bioenergy Generation: Study of the Thermodynamic Properties," Energies, MDPI, vol. 13(10), pages 1-14, May.
    3. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    4. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    5. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    6. Tianyou Chen & Honglei Jia & Shengwei Zhang & Xumin Sun & Yuqiu Song & Hongfang Yuan, 2020. "Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel," Energies, MDPI, vol. 13(3), pages 1-21, February.
    7. Arkadiusz Dyjakon & Tomasz Noszczyk & Agata Mostek, 2021. "Mechanical Durability and Grindability of Pellets after Torrefaction Process," Energies, MDPI, vol. 14(20), pages 1-16, October.
    8. Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
    9. Jerzy Chojnacki & Agnieszka Zdanowicz & Juraj Ondruška & Ľubomír Šooš & Małgorzata Smuga-Kogut, 2021. "The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw," Energies, MDPI, vol. 14(2), pages 1-13, January.
    10. Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
    11. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    13. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    14. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    15. Mohammadjavad Mobarra & Miloud Rezkallah & Adrian Ilinca, 2022. "Variable Speed Diesel Generators: Performance and Characteristic Comparison," Energies, MDPI, vol. 15(2), pages 1-31, January.
    16. Shuren Chen & Yunfei Zhao & Zhong Tang & Hantao Ding & Zhan Su & Zhao Ding, 2022. "Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    17. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    18. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    19. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    20. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6332-:d:454219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.