IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2176-d1543244.html
   My bibliography  Save this article

Research Overview on Urban Heat Islands Driven by Computational Intelligence

Author

Listed:
  • Chao Liu

    (School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China)

  • Siyu Lu

    (School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China)

  • Jiawei Tian

    (Department of Computer Science and Engineering, Hanyang University, Ansan 15577, Republic of Korea)

  • Lirong Yin

    (Department of Geography & Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA)

  • Lei Wang

    (Department of Geography & Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA)

  • Wenfeng Zheng

    (School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China)

Abstract

In recent years, the intensification of the urban heat island (UHI) effect has become a significant concern as urbanization accelerates. This survey comprehensively explores the current status of surface UHI research, emphasizing the role of land use and land cover changes (LULC) in urban environments. We conducted a systematic review of 8260 journal articles from the Web of Science database, employing bibliometric analysis and keyword co-occurrence analysis using CiteSpace to identify research hotspots and trends. Our investigation reveals that vegetation cover and land use types are the two most critical factors influencing UHI intensity. We analyze various computational intelligence techniques, including machine learning algorithms, cellular automata, and artificial neural networks, used for simulating urban expansion and predicting UHI effects. The study also examines numerical modeling methods, including the Weather Research and Forecasting (WRF) model, while examining the application of Computational Fluid Dynamics (CFD) in urban microclimate research. Furthermore, we evaluate potential mitigation strategies, considering urban planning approaches, green infrastructure solutions, and the use of high-albedo materials. This comprehensive survey not only highlights the critical relationship between land use dynamics and UHIs but also provides a direction for future research in computational intelligence-driven urban climate studies.

Suggested Citation

  • Chao Liu & Siyu Lu & Jiawei Tian & Lirong Yin & Lei Wang & Wenfeng Zheng, 2024. "Research Overview on Urban Heat Islands Driven by Computational Intelligence," Land, MDPI, vol. 13(12), pages 1-26, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2176-:d:1543244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Zhang & Yuchen Wang & Nan Ding & Xiaoyan Yang, 2022. "Spatial Pattern Impact of Impervious Surface Density on Urban Heat Island Effect: A Case Study in Xuzhou, China," Land, MDPI, vol. 11(12), pages 1-20, November.
    2. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    3. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    4. Yishao Shi & Jie Wu & Shouzheng Shi, 2017. "Study of the Simulated Expansion Boundary of Construction Land in Shanghai Based on a SLEUTH Model," Sustainability, MDPI, vol. 9(6), pages 1-15, May.
    5. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    6. Ruoning Chen & Xue-yi You, 2020. "Reduction of urban heat island and associated greenhouse gas emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 689-711, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    2. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Hsing-Fu Kuo & Ko-Wan Tsou, 2017. "Modeling and Simulation of the Future Impacts of Urban Land Use Change on the Natural Environment by SLEUTH and Cluster Analysis," Sustainability, MDPI, vol. 10(1), pages 1-21, December.
    4. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    5. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    7. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Tengfei Zhao & Jianlin Zhu & Zhiyu Jian & Xian Zhou & Puwei Zhang, 2024. "Effects of the “Urban Double Repairs” Policy on Urban Land-Use Carbon Emission Efficiency," Sustainability, MDPI, vol. 16(23), pages 1-24, November.
    9. Yuchen Wang & Yu Zhang & Nan Ding, 2024. "Investigation into the Mechanism of the Impact of Sunlight Exposure Area of Urban Artificial Structures and Human Activities on Land Surface Temperature Based on Point of Interest Data," Land, MDPI, vol. 13(11), pages 1-20, November.
    10. Priscila Weruska Stark da Silva & Denise Duarte & Stephan Pauleit, 2023. "The Role of the Design of Public Squares and Vegetation Composition on Human Thermal Comfort in Different Seasons a Quantitative Assessment," Land, MDPI, vol. 12(2), pages 1-20, February.
    11. Wenyu Zhou & Jinjiang Zhang & Xuan Li & Fei Guo & Peisheng Zhu, 2024. "Influence of Environmental Factors on Pedestrian Summer Vitality in Urban Pedestrian Streets in Cold Regions Guided by Thermal Comfort: A Case Study of Sanlitun—Beijing, China," Sustainability, MDPI, vol. 16(23), pages 1-28, November.
    12. Shuyao Wu & Kai-Di Liu & Wentao Zhang & Yuehan Dou & Yuqing Chen & Delong Li, 2023. "To better understand realized ecosystem services: An integrated analysis framework of supply, demand, flow and use," Papers 2309.15574, arXiv.org.
    13. Néstor García-Chan & Juan A. Licea-Salazar & Luis G. Gutierrez-Ibarra, 2023. "Urban Heat Island Dynamics in an Urban–Rural Domain with Variable Porosity: Numerical Methodology and Simulation," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    14. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    15. Fabiana Frota de Albuquerque Landi & Claudia Fabiani & Anna Laura Pisello, 2021. "Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    16. Jongyeon Lim & Ryozo Ooka, 2021. "A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential," Energies, MDPI, vol. 14(5), pages 1-16, March.
    17. Hongyu Du & Fengqi Zhou & Wenbo Cai & Yongli Cai & Yanqing Xu, 2021. "Thermal and Humidity Effect of Urban Green Spaces with Different Shapes: A Case Study of Shanghai, China," IJERPH, MDPI, vol. 18(11), pages 1-13, June.
    18. Ruoning Chen & Xue-yi You, 2020. "Reduction of urban heat island and associated greenhouse gas emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 689-711, April.
    19. Niels Wollschläger & Felix Zinck & Uwe Schlink, 2022. "Sustainable Urban Development for Heat Adaptation of Small and Medium Sized Communities," Land, MDPI, vol. 11(9), pages 1-17, August.
    20. Minghui Sun & Yibing Xue & Lei Wang, 2024. "Research on Optimized Design of Rural Housing in Cold Regions Based on Parametrization and Machine Learning," Sustainability, MDPI, vol. 16(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2176-:d:1543244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.