IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5791-d440383.html
   My bibliography  Save this article

Feasibility for Damage Identification in Offshore Wind Jacket Structures through Monitoring of Global Structural Dynamics

Author

Listed:
  • Mark Richmond

    (Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

  • Ursula Smolka

    (Offshore Wind New Services Department, Ramboll, 20095 Hamburg, Germany)

  • Athanasios Kolios

    (Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

Abstract

The modal response of a four-legged jacket structure to damages are explored and resulting considerations for damage detection are discussed. A finite element model of the Wikinger (Iberdrola) jacket structure is used to investigate damage detection. Damages, such as cracks, scour, corrosion and more, are modelled in a simulation environment. The resulting modal parameters are calculated, these parameters are compared to those from an unaltered structure and metrics are calculated including frequency change, modal assurance criterion and modal flexibility. A highly detailed design-model is used to conduct a sensitivity study on modal parameters for a range of changes. By conducting this on the same structure, this acts as a useful reference for those interested in the dynamic response of offshore wind jacket structures. Additionally, this paper addresses the issue of changes in mode parameters resulting from turbine yaw. This paper also considers the challenge of mode-swapping in semi-symmetric structures and proposes several approaches for addressing this. Damage typically results in a reduction of frequency and change in mode shapes, but in ways which can be distinguished from other structural changes, given the extent of this model. These findings are important considerations for modal-based damage detection of offshore wind support structures.

Suggested Citation

  • Mark Richmond & Ursula Smolka & Athanasios Kolios, 2020. "Feasibility for Damage Identification in Offshore Wind Jacket Structures through Monitoring of Global Structural Dynamics," Energies, MDPI, vol. 13(21), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5791-:d:440383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Maria Martinez-Luengo & Mahmood Shafiee, 2019. "Guidelines and Cost-Benefit Analysis of the Structural Health Monitoring Implementation in Offshore Wind Turbine Support Structures," Energies, MDPI, vol. 12(6), pages 1-26, March.
    3. Maria Martinez Luengo & Athanasios Kolios, 2015. "Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 8(8), pages 1-16, August.
    4. Yu-Kai Wang & Juin-Fu Chai & Yu-Wen Chang & Ti-Ying Huang & Yu-Shu Kuo, 2016. "Development of Seismic Demand for Chang-Bin Offshore Wind Farm in Taiwan Strait," Energies, MDPI, vol. 9(12), pages 1-19, December.
    5. Shuqing Wang & Min Zhang & Huajun Li, 2015. "Damage Localization of an Offshore Platform considering Temperature Variations," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, October.
    6. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koukoura, Sofia & Scheu, Matti Niclas & Kolios, Athanasios, 2021. "Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    3. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Maria Martinez-Luengo & Mahmood Shafiee, 2019. "Guidelines and Cost-Benefit Analysis of the Structural Health Monitoring Implementation in Offshore Wind Turbine Support Structures," Energies, MDPI, vol. 12(6), pages 1-26, March.
    5. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    6. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    8. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    9. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    10. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    11. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
    12. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    13. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    14. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    15. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
    16. Jannie Sønderkær Nielsen & Lindsay Miller-Branovacki & Rupp Carriveau, 2021. "Probabilistic and Risk-Informed Life Extension Assessment of Wind Turbine Structural Components," Energies, MDPI, vol. 14(4), pages 1-16, February.
    17. Wei-Chen Tseng & Yu-Shu Kuo & Kung-Chun Lu & Jing-Wen Chen & Chiou-Fong Chung & Ruey-Chyi Chen, 2018. "Effect of Scour on the Natural Frequency Responses of the Meteorological Mast in the Taiwan Strait," Energies, MDPI, vol. 11(4), pages 1-18, April.
    18. Rad Haghi & Cassidy Stagg & Curran Crawford, 2024. "Wind Turbine Damage Equivalent Load Assessment Using Gaussian Process Regression Combining Measurement and Synthetic Data," Energies, MDPI, vol. 17(2), pages 1-24, January.
    19. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J., 2022. "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    20. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5791-:d:440383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.