IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120307346.html
   My bibliography  Save this article

Considerations for the structural analysis and design of wind turbine towers: A review

Author

Listed:
  • Hernandez-Estrada, Edwin
  • Lastres-Danguillecourt, Orlando
  • Robles-Ocampo, Jose B.
  • Lopez-Lopez, Andres
  • Sevilla-Camacho, Perla Y.
  • Perez-Sariñana, Bianca Y.
  • Dorrego-Portela, Jose R.

Abstract

The use of wind generators has grown exponentially in recent decades to meet the increasing demand for electricity. With both generator design and generation capability growing, the resulting increases in the size of generators require them to withstand multiple and intense dynamic loads. These loads cause greater stresses, fatigue, torsions, deflections, and vibrations, among others, leading to greater failures during a generator's life cycle. These issues are of great significance to the research and technological development involved in improving the design, manufacturing process, and installation of wind turbine towers. This work presents a detailed review of the most notable aspects involved in the analysis and design of towers. These aspects include loads and actuating forces, types of structural analysis, used software, and types of experiments used for validating the aspects themselves. In addition, different perspectives regarding the types of supports for onshore and offshore wind turbines are discussed. Likewise, the proposals for new designs and construction materials are also analyzed. The present review integrates the most relevant aspects and recent developments in the design, manufacture, and installation of wind turbine towers. This has been carried out with the objective of providing a contemporary frame of reference that will facilitate the future research and project development related to wind turbine towers.

Suggested Citation

  • Hernandez-Estrada, Edwin & Lastres-Danguillecourt, Orlando & Robles-Ocampo, Jose B. & Lopez-Lopez, Andres & Sevilla-Camacho, Perla Y. & Perez-Sariñana, Bianca Y. & Dorrego-Portela, Jose R., 2021. "Considerations for the structural analysis and design of wind turbine towers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120307346
    DOI: 10.1016/j.rser.2020.110447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120307346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiong & Lu, Cheng & Li, Gangqiang & Godbole, Ajit & Chen, Yan, 2017. "Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines," Applied Energy, Elsevier, vol. 204(C), pages 1101-1114.
    2. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    3. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    4. Ranganathan, C.R. & Ramanathan, M. & Swaminathan, K.R., 1991. "Estimation of wind power availability in Tamil Nadu," Renewable Energy, Elsevier, vol. 1(3), pages 429-434.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lenci, Stefano, 2023. "Along-wind and cross-wind coupled nonlinear oscillations of wind turbine towers close to 1:1 internal resonance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Charis J. Gantes & Maria Villi Billi & Mahmut Güldogan & Semih Gül, 2021. "A Novel Tripod Concept for Onshore Wind Turbine Towers," Energies, MDPI, vol. 14(18), pages 1-25, September.
    3. Majidi Nezhad, Meysam & Heydari, Azim & Neshat, Mehdi & Keynia, Farshid & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "A Mediterranean Sea Offshore Wind classification using MERRA-2 and machine learning models," Renewable Energy, Elsevier, vol. 190(C), pages 156-166.
    4. Georgios Malliotakis & Panagiotis Alevras & Charalampos Baniotopoulos, 2021. "Recent Advances in Vibration Control Methods for Wind Turbine Towers," Energies, MDPI, vol. 14(22), pages 1-37, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
    2. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    3. Wen, Binrong & Jiang, Zhihao & Li, Zhanwei & Peng, Zhike & Dong, Xingjian & Tian, Xinliang, 2022. "On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 306-319.
    4. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    5. Sun, Chuan & Chen, Yueyi & Cheng, Cheng, 2021. "Imputation of missing data from offshore wind farms using spatio-temporal correlation and feature correlation," Energy, Elsevier, vol. 229(C).
    6. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    7. Tao Luo & De Tian & Ruoyu Wang & Caicai Liao, 2018. "Stochastic Dynamic Response Analysis of a 10 MW Tension Leg Platform Floating Horizontal Axis Wind Turbine," Energies, MDPI, vol. 11(12), pages 1-24, November.
    8. Moynihan, Bridget & Mehrjoo, Azin & Moaveni, Babak & McAdam, Ross & Rüdinger, Finn & Hines, Eric, 2023. "System identification and finite element model updating of a 6 MW offshore wind turbine using vibrational response measurements," Renewable Energy, Elsevier, vol. 219(P1).
    9. Soares-Ramos, Emanuel P.P. & de Oliveira-Assis, Lais & Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M., 2020. "Current status and future trends of offshore wind power in Europe," Energy, Elsevier, vol. 202(C).
    10. Jieyan Chen & Chengxi Li, 2020. "Design Optimization and Coupled Dynamics Analysis of an Offshore Wind Turbine with a Single Swivel Connected Tether," Energies, MDPI, vol. 13(14), pages 1-26, July.
    11. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    12. Mingyuan Wang & Miao Wang & Xinglei Cheng & Qun Lu & Jiaqing Lu, 2022. "A New p–y Curve for Laterally Loaded Large-Diameter Monopiles in Soft Clays," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    13. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    14. Renqiang Xi & Piguang Wang & Xiuli Du & Chengshun Xu & Junbo Jia, 2020. "Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads," Energies, MDPI, vol. 13(15), pages 1-27, July.
    15. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    16. Pei Zhang & Shugeng Yang & Yan Li & Jiayang Gu & Zhiqiang Hu & Ruoyu Zhang & Yougang Tang, 2020. "Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths," Energies, MDPI, vol. 13(11), pages 1-20, June.
    17. Min-Chih Hsu & Hsuan-Shih Lee, 2023. "Applying AHP-IFNs-DEMATEL in Establishing a Supplier Selection Model: A Case Study of Offshore Wind Power Companies in Taiwan," Energies, MDPI, vol. 16(11), pages 1-23, June.
    18. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J., 2022. "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    20. Ahmed Shata, A.S. & Hanitsch, R., 2006. "Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt," Renewable Energy, Elsevier, vol. 31(8), pages 1183-1202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120307346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.