A comprehensive fatigue load set reduction study for offshore wind turbines with jacket substructures
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2017.10.097
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hübler, Clemens & Gebhardt, Cristian Guillermo & Rolfes, Raimund, 2017. "Hierarchical four-step global sensitivity analysis of offshore wind turbines based on aeroelastic time domain simulations," Renewable Energy, Elsevier, vol. 111(C), pages 878-891.
- Benedikt Ernst & Jörg R. Seume, 2012. "Investigation of Site-Specific Wind Field Parameters and Their Effect on Loads of Offshore Wind Turbines," Energies, MDPI, vol. 5(10), pages 1-21, October.
- Toft, Henrik Stensgaard & Svenningsen, Lasse & Sørensen, John Dalsgaard & Moser, Wolfgang & Thøgersen, Morten Lybech, 2016. "Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads," Renewable Energy, Elsevier, vol. 90(C), pages 352-361.
- Dong, Wenbin & Moan, Torgeir & Gao, Zhen, 2012. "Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 11-27.
- Morató, A. & Sriramula, S. & Krishnan, N. & Nichols, J., 2017. "Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation," Renewable Energy, Elsevier, vol. 101(C), pages 126-143.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ju, Shen-Haw, 2022. "Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
- Chen, Chao & Duffour, Philippe & Fromme, Paul & Hua, Xugang, 2021. "Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling," Renewable Energy, Elsevier, vol. 178(C), pages 1421-1434.
- Ren, Chao & Xing, Yihan, 2023. "AK-MDAmax: Maximum fatigue damage assessment of wind turbine towers considering multi-location with an active learning approach," Renewable Energy, Elsevier, vol. 215(C).
- Clemens Hübler & Wout Weijtjens & Cristian G. Gebhardt & Raimund Rolfes & Christof Devriendt, 2019. "Validation of Improved Sampling Concepts for Offshore Wind Turbine Fatigue Design," Energies, MDPI, vol. 12(4), pages 1-20, February.
- Hübler, Clemens, 2020. "Global sensitivity analysis for medium-dimensional structural engineering problems using stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Ju, Shen-Haw & Su, Feng-Chien & Ke, Yi-Pei & Xie, Min-Hsuan, 2019. "Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme," Renewable Energy, Elsevier, vol. 136(C), pages 69-78.
- Njiri, Jackson G. & Beganovic, Nejra & Do, Manh H. & Söffker, Dirk, 2019. "Consideration of lifetime and fatigue load in wind turbine control," Renewable Energy, Elsevier, vol. 131(C), pages 818-828.
- Maximilian Henkel & Wout Weijtjens & Christof Devriendt, 2021. "Fatigue Stress Estimation for Submerged and Sub-Soil Welds of Offshore Wind Turbines on Monopiles Using Modal Expansion," Energies, MDPI, vol. 14(22), pages 1-21, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
- Velarde, Joey & Kramhøft, Claus & Sørensen, John Dalsgaard, 2019. "Global sensitivity analysis of offshore wind turbine foundation fatigue loads," Renewable Energy, Elsevier, vol. 140(C), pages 177-189.
- Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
- Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
- Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
- Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
- Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2018. "Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 120-130.
- Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
- Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
- Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
- Shao, Yizhe & Liu, Jie, 2024. "Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning," Renewable Energy, Elsevier, vol. 222(C).
- Wang, Shuaishuai & Moan, Torgeir & Jiang, Zhiyu, 2022. "Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain," Renewable Energy, Elsevier, vol. 181(C), pages 870-897.
- Chen, Chao & Duffour, Philippe & Fromme, Paul & Hua, Xugang, 2021. "Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling," Renewable Energy, Elsevier, vol. 178(C), pages 1421-1434.
- Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).
- Li, He & Diaz, H. & Guedes Soares, C., 2021. "A developed failure mode and effect analysis for floating offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 164(C), pages 133-145.
- Haselsteiner, Andreas F. & Thoben, Klaus-Dieter, 2020. "Predicting wave heights for marine design by prioritizing extreme events in a global model," Renewable Energy, Elsevier, vol. 156(C), pages 1146-1157.
More about this item
Keywords
Offshore wind energy; Fatigue limit state; Load set reduction; FINO3; Jacket substructures; Lattice substructures;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:99-112. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.