IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i11p1164-d82581.html
   My bibliography  Save this article

Energetic Sustainability Using Renewable Energies in the Mediterranean Sea

Author

Listed:
  • Vincenzo Franzitta

    (Department of Energy, Information and Mathematical Models, UNIPA (University of Palermo), Palermo 90128, Italy)

  • Domenico Curto

    (Department of Energy, Information and Mathematical Models, UNIPA (University of Palermo), Palermo 90128, Italy)

  • Davide Rao

    (Department of Energy, Information and Mathematical Models, UNIPA (University of Palermo), Palermo 90128, Italy)

Abstract

The paper is focused on the analysis of the electrical energy sector in the Maltese islands, focusing on the employment of Renewable Energies in order to increase its energy independence. The main renewable source here proposed is wave energy: thanks to its strategic position, Malta will be able to generate electrical energy through the use of an innovative type of Wave Energy Converter (WEC) based on the prototype of linear generator designed and developed by the University of Palermo. This new technology will be able to cut down the electrical energy production from traditional power plants and, consequently, the greenhouse gas emissions (GHG). Wave energy source and off-shore photovoltaic (PV) technology are proposed here. Particularly, the installation of 18 wave farms, for a total installed capacity of 130 MW, will generate about 5.7% of Malta’s energy requests in 2025, while the installation of 60 MW of off-shore PV will generate about 4.4%.

Suggested Citation

  • Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1164-:d:82581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/11/1164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/11/1164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qoaider, Louy & Steinbrecht, Dieter, 2010. "Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions," Applied Energy, Elsevier, vol. 87(2), pages 427-435, February.
    2. Ciabattoni, Lucio & Grisostomi, Massimo & Ippoliti, Gianluca & Longhi, Sauro, 2014. "Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario," Energy, Elsevier, vol. 74(C), pages 359-367.
    3. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    4. Volpe, Roberto & Messineo, Antonio & Millan, Marcos & Volpe, Maurizio & Kandiyoti, Rafael, 2015. "Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown," Energy, Elsevier, vol. 82(C), pages 119-127.
    5. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincenzo Franzitta & Domenico Curto & Daniele Milone & Alessia Viola, 2016. "The Desalination Process Driven by Wave Energy: A Challenge for the Future," Energies, MDPI, vol. 9(12), pages 1-16, December.
    2. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    4. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    5. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Cárcel-Carrasco, Javier & Pérez-Navarro, Ángel, 2022. "Energy sustainability evolution in the Mediterranean countries and synergies from a global energy scenario for the area," Energy, Elsevier, vol. 252(C).
    6. Hai-Cheng Zhang & Dao-Lin Xu & Chun-Rong Liu & You-Sheng Wu, 2017. "A Floating Platform with Embedded Wave Energy Harvesting Arrays in Regular and Irregular Seas," Energies, MDPI, vol. 10(9), pages 1-17, September.
    7. Aleix Maria-Arenas & Aitor J. Garrido & Eugen Rusu & Izaskun Garrido, 2019. "Control Strategies Applied to Wave Energy Converters: State of the Art," Energies, MDPI, vol. 12(16), pages 1-19, August.
    8. Edivando Vitor do Couto & Pablo B. Oliveira & Luciane Maria Vieira & Marcelo H. Schmitz & José Hilário D. Ferreira, 2020. "Integrating Environmental, Geographical and Social Data to Assess Sustainability in Hydrographic Basins: The ESI Approach," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    9. Vincenzo Franzitta & Pietro Catrini & Domenico Curto, 2017. "Wave Energy Assessment along Sicilian Coastline, Based on DEIM Point Absorber," Energies, MDPI, vol. 10(3), pages 1-15, March.
    10. Jie Ma & Amos Oppong & Kingsley Nketia Acheampong & Lucille Aba Abruquah, 2018. "Forecasting Renewable Energy Consumption under Zero Assumptions," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    11. Vincenzo Franzitta & Domenico Curto, 2017. "Sustainability of the Renewable Energy Extraction Close to the Mediterranean Islands," Energies, MDPI, vol. 10(3), pages 1-19, February.
    12. Yongyao Luo & Alexandre Presas & Zhengwei Wang, 2019. "Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion," Energies, MDPI, vol. 12(5), pages 1-12, March.
    13. Hugo Mendonça & Rosa M. De Castro & Sergio Martínez & David Montalbán, 2017. "Voltage Impact of a Wave Energy Converter on an Unbalanced Distribution Grid and Corrective Actions," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    14. Vatamanu, Anca Florentina & Zugravu, Bogdan Gabriel, 2023. "Financial development, institutional quality and renewable energy consumption. A panel data approach," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 765-775.
    15. Jacek Brożyna & Grzegorz Mentel & Eva Ivanová & Gennadii Sorokin, 2019. "Classification of Renewable Sources of Electricity in the Context of Sustainable Development of the New EU Member States," Energies, MDPI, vol. 12(12), pages 1-22, June.
    16. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Ilaria Delponte & Corrado Schenone, 2020. "RES Implementation in Urban Areas: An Updated Overview," Sustainability, MDPI, vol. 12(1), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    2. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    3. Hua, Jian & Shiu, Hong-Gwo, 2018. "Sustainable development of renewable energy on Wangan Island, Taiwan," Utilities Policy, Elsevier, vol. 55(C), pages 200-208.
    4. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    5. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    6. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    7. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    8. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    9. Bismark Singh & Bernard Knueven, 2021. "Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system," Journal of Global Optimization, Springer, vol. 80(4), pages 965-989, August.
    10. Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.
    11. Zhang, Dahai & Fan, Wei & Yang, Jing & Pan, Yiwen & Chen, Ying & Huang, Haocai & Chen, Jiawang, 2016. "Reviews of power supply and environmental energy conversions for artificial upwelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 659-668.
    12. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    13. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2018. "Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    14. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    15. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    16. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    17. Vincenzo Franzitta & Domenico Curto & Daniele Milone & Davide Rao, 2016. "Assessment of Renewable Sources for the Energy Consumption in Malta in the Mediterranean Sea," Energies, MDPI, vol. 9(12), pages 1-17, December.
    18. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    19. Eriksson, E.L.V. & Gray, E.MacA., 2017. "Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review," Applied Energy, Elsevier, vol. 202(C), pages 348-364.
    20. Hegazy Rezk & N. Kanagaraj & Mujahed Al-Dhaifallah, 2020. "Design and Sensitivity Analysis of Hybrid Photovoltaic-Fuel-Cell-Battery System to Supply a Small Community at Saudi NEOM City," Sustainability, MDPI, vol. 12(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1164-:d:82581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.