IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4932-d416382.html
   My bibliography  Save this article

State Estimation for Hybrid VSC Based HVDC/AC Transmission Networks

Author

Listed:
  • Motaz Ayiad

    (Efacec Automation, Grid Management Division, 4471-907 Porto, Portugal
    Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal
    Current address: Via de Francisco Sá Carneiro Apartado 3078, 4471-907 Moreira da Maia, Porto, Portugal.)

  • Helder Leite

    (Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal)

  • Hugo Martins

    (Efacec Automation, Grid Management Division, 4471-907 Porto, Portugal)

Abstract

As the integration of High Voltage Direct Current (HVDC) systems on modern power networks continues to expand, challenges have appeared in different fields of the network architecture. In the Supervisory, Control and Data Acquisition (SCADA) field, software and toolboxes are expected to be modified to meet the new network characteristics. Therefore, this paper presents a unified Weighted Least Squares (WLS) state estimation algorithm suitable for hybrid HVDC/AC transmission systems, based on Voltage Source Converter (VSC). The mathematical formulas of the unified approach are derived for modelling the AC, DC and converter coupling components. The method couples the AC and DC sides of the converter through power and voltage constraints and measurement functions. Two hybrid power system test cases have been studied to validate this work, a 4-AC/4-DC/4-AC network and Cigre B4 DC test case network. Furthermore, comparison between the fully decentralized state estimation and the unified method is provided, which indicated an accuracy improvement and error reduction.

Suggested Citation

  • Motaz Ayiad & Helder Leite & Hugo Martins, 2020. "State Estimation for Hybrid VSC Based HVDC/AC Transmission Networks," Energies, MDPI, vol. 13(18), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4932-:d:416382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    2. Rosario Miceli, 2013. "Energy Management and Smart Grids," Energies, MDPI, vol. 6(4), pages 1-29, April.
    3. Francisco de Paula García-López & Manuel Barragán-Villarejo & Alejandro Marano-Marcolini & José María Maza-Ortega & José Luis Martínez-Ramos, 2018. "Experimental Assessment of a Centralised Controller for High-RES Active Distribution Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulwahab A. Aljabrine & Abdallah A. Smadi & Yacine Chakhchoukh & Brian K. Johnson & Hangtian Lei, 2021. "Resiliency Improvement of an AC/DC Power Grid with Embedded LCC-HVDC Using Robust Power System State Estimation," Energies, MDPI, vol. 14(23), pages 1-17, November.
    2. Motaz Ayiad & Emily Maggioli & Helder Leite & Hugo Martins, 2021. "Communication Requirements for a Hybrid VSC Based HVDC/AC Transmission Networks State Estimation," Energies, MDPI, vol. 14(4), pages 1-25, February.
    3. Gaurav Kumar Roy & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "A Two-Step State Estimation Algorithm for Hybrid AC-DC Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José M. Maza-Ortega & Juan M. Mauricio & Manuel Barragán-Villarejo & Charis Demoulias & Antonio Gómez-Expósito, 2019. "Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks," Energies, MDPI, vol. 12(19), pages 1-22, September.
    2. Alexandra Blanch-Fortuna & David Zambrano-Prada & Oswaldo López-Santos & Abdelali El Aroudi & Luis Vázquez-Seisdedos & Luis Martinez-Salamero, 2024. "Hierarchical Control of Power Distribution in the Hybrid Energy Storage System of an Ultrafast Charging Station for Electric Vehicles," Energies, MDPI, vol. 17(6), pages 1-20, March.
    3. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.
    4. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    5. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    6. Joao C. Ferreira & Ana Lucia Martins, 2018. "Building a Community of Users for Open Market Energy," Energies, MDPI, vol. 11(9), pages 1-21, September.
    7. Vitor Monteiro & Julio S. Martins & João Carlos Aparício Fernandes & Joao L. Afonso, 2021. "Review of a Disruptive Vision of Future Power Grids: A New Path Based on Hybrid AC/DC Grids and Solid-State Transformers," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    8. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    9. Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.
    10. Lefeng Cheng & Zhiyi Zhang & Haorong Jiang & Tao Yu & Wenrui Wang & Weifeng Xu & Jinxiu Hua, 2018. "Local Energy Management and Optimization: A Novel Energy Universal Service Bus System Based on Energy Internet Technologies," Energies, MDPI, vol. 11(5), pages 1-38, May.
    11. Mirsaeidi, Sohrab & Dong, Xinzhou & Said, Dalila Mat, 2018. "Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 97-103.
    12. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    13. Wilson Pavon & Esteban Inga & Silvio Simani & Matthew Armstrong, 2023. "Optimal Hierarchical Control for Smart Grid Inverters Using Stability Margin Evaluating Transient Voltage for Photovoltaic System," Energies, MDPI, vol. 16(5), pages 1-16, March.
    14. Hao Pan & Ming Ding & Anwei Chen & Rui Bi & Lei Sun & Shengliang Shi, 2018. "Research on Distributed Power Capacity and Site Optimization Planning of AC/DC Hybrid Micrograms Considering Line Factors," Energies, MDPI, vol. 11(8), pages 1-18, July.
    15. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    16. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    17. Aniela Kaminska & Andrzej Ożadowicz, 2018. "Lighting Control Including Daylight and Energy Efficiency Improvements Analysis," Energies, MDPI, vol. 11(8), pages 1-18, August.
    18. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    19. Chang Ye & Shihong Miao & Yaowang Li & Chao Li & Lixing Li, 2018. "Hierarchical Scheduling Scheme for AC/DC Hybrid Active Distribution Network Based on Multi-Stakeholders," Energies, MDPI, vol. 11(10), pages 1-16, October.
    20. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4932-:d:416382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.