IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1967-d529091.html
   My bibliography  Save this article

A Two-Step State Estimation Algorithm for Hybrid AC-DC Distribution Grids

Author

Listed:
  • Gaurav Kumar Roy

    (Institute for Automation of Complex Power Systems, RWTH Aachen University, 52062 Aachen, Germany)

  • Marco Pau

    (Institute for Automation of Complex Power Systems, RWTH Aachen University, 52062 Aachen, Germany)

  • Ferdinanda Ponci

    (Institute for Automation of Complex Power Systems, RWTH Aachen University, 52062 Aachen, Germany)

  • Antonello Monti

    (Institute for Automation of Complex Power Systems, RWTH Aachen University, 52062 Aachen, Germany)

Abstract

Direct Current (DC) grids are considered an attractive option for integrating high shares of renewable energy sources in the electrical distribution grid. Hence, in the future, Alternating Current (AC) and DC systems could be interconnected to form hybrid AC-DC distribution grids. This paper presents a two-step state estimation formulation for the monitoring of hybrid AC-DC grids. In the first step, state estimation is executed independently for the AC and DC areas of the distribution system. The second step refines the estimation results by exchanging boundary quantities at the AC-DC converters. To this purpose, the modulation index and phase angle control of the AC-DC converters are integrated into the second step of the proposed state estimation formulation. This allows providing additional inputs to the state estimation algorithm, which eventually leads to improve the accuracy of the state estimation results. Simulations on a sample AC-DC distribution grid are performed to highlight the benefits resulting from the integration of these converter control parameters for the estimation of both the AC and DC grid quantities.

Suggested Citation

  • Gaurav Kumar Roy & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "A Two-Step State Estimation Algorithm for Hybrid AC-DC Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1967-:d:529091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1967/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1967/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sungchul Hwang & Sungyoon Song & Gilsoo Jang & Minhan Yoon, 2019. "An Operation Strategy of the Hybrid Multi-Terminal HVDC for Contingency," Energies, MDPI, vol. 12(11), pages 1-22, May.
    2. Motaz Ayiad & Helder Leite & Hugo Martins, 2020. "State Estimation for Hybrid VSC Based HVDC/AC Transmission Networks," Energies, MDPI, vol. 13(18), pages 1-27, September.
    3. Hakim Azaioud & Robbert Claeys & Jos Knockaert & Lieven Vandevelde & Jan Desmet, 2021. "A Low-Voltage DC Backbone with Aggregated RES and BESS: Benefits Compared to a Traditional Low-Voltage AC System," Energies, MDPI, vol. 14(5), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulwahab A. Aljabrine & Abdallah A. Smadi & Yacine Chakhchoukh & Brian K. Johnson & Hangtian Lei, 2021. "Resiliency Improvement of an AC/DC Power Grid with Embedded LCC-HVDC Using Robust Power System State Estimation," Energies, MDPI, vol. 14(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azaioud, Hakim & Farnam, Arash & Knockaert, Jos & Vandevelde, Lieven & Desmet, Jan, 2024. "Efficiency optimisation and converterless PV integration by applying a dynamic voltage on an LVDC backbone," Applied Energy, Elsevier, vol. 356(C).
    2. Seung-Taek Lim & Ki-Yeon Lee & Dong-Ju Chae & Sung-Hun Lim, 2022. "Design of Mid-Point Ground with Resistors and Capacitors in Mono-Polar LVDC System," Energies, MDPI, vol. 15(22), pages 1-20, November.
    3. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    4. Rémy Cleenwerck & Hakim Azaioud & Majid Vafaeipour & Thierry Coosemans & Jan Desmet, 2023. "Impact Assessment of Electric Vehicle Charging in an AC and DC Microgrid: A Comparative Study," Energies, MDPI, vol. 16(7), pages 1-17, April.
    5. Fahad Alsokhiry & Grain Philip Adam, 2020. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    6. Motaz Ayiad & Emily Maggioli & Helder Leite & Hugo Martins, 2021. "Communication Requirements for a Hybrid VSC Based HVDC/AC Transmission Networks State Estimation," Energies, MDPI, vol. 14(4), pages 1-25, February.
    7. Leandro Almeida Vasconcelos & João Alberto Passos Filho & André Luis Marques Marcato & Giovani Santiago Junqueira, 2021. "A Full-Newton AC-DC Power Flow Methodology for HVDC Multi-Terminal Systems and Generic DC Network Representation," Energies, MDPI, vol. 14(6), pages 1-17, March.
    8. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Jesús C. Hernández, 2023. "Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation," Energies, MDPI, vol. 16(3), pages 1-14, January.
    9. Umar Javed & Neelam Mughees & Muhammad Jawad & Omar Azeem & Ghulam Abbas & Nasim Ullah & Md. Shahariar Chowdhury & Kuaanan Techato & Khurram Shabih Zaidi & Umair Tahir, 2021. "A Systematic Review of Key Challenges in Hybrid HVAC–HVDC Grids," Energies, MDPI, vol. 14(17), pages 1-27, September.
    10. Abdulwahab A. Aljabrine & Abdallah A. Smadi & Yacine Chakhchoukh & Brian K. Johnson & Hangtian Lei, 2021. "Resiliency Improvement of an AC/DC Power Grid with Embedded LCC-HVDC Using Robust Power System State Estimation," Energies, MDPI, vol. 14(23), pages 1-17, November.
    11. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1967-:d:529091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.