IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4819-d413833.html
   My bibliography  Save this article

Investigation of the Spray Development Process of Gasoline-Biodiesel Blended Fuel Sprays in a Constant Volume Chamber

Author

Listed:
  • Kihyun Kim

    (Division of Mechanical Convergence Engineering, Silla University, 140 Baegyang-daero(Blvd), 700beon-gil(Rd.), Sasang-Gu, Busan 46958, Korea)

  • Ocktaeck Lim

    (School of Mechanical Engineering, University of Ulsan, San 29, Mugeo2-dong, Nam-gu, Ulsan 44610, Korea)

Abstract

This study investigated gasoline–biodiesel blended fuel (GB) subjected to a fuel spray development process on macroscopic and microscopic scales. The four tested fuels were neat gasoline and gasoline containing biodiesel (5%, 20%, and 40% by volume) at three different ratios. The initial spray near the nozzle revealed that the spray penetration and spray tip velocity both decreased with decreasing biodiesel blending ratio. In addition, the different spray tip velocities at the start of spraying result in different atomization regimes between the fuels. The GB fuels with a low biodiesel blending ratio were disadvantaged in terms of spray atomization due to their lower spray penetration and tip velocity. The macroscopic spray penetration changes were similar to those observed in the microscopic spray. The fuel with the lower biodiesel blending ratio had a larger spray cone angle, indicating increased radial spray dispersion.

Suggested Citation

  • Kihyun Kim & Ocktaeck Lim, 2020. "Investigation of the Spray Development Process of Gasoline-Biodiesel Blended Fuel Sprays in a Constant Volume Chamber," Energies, MDPI, vol. 13(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4819-:d:413833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
    2. Bohl, Thomas & Tian, Guohong & Smallbone, Andrew & Roskilly, Anthony P., 2017. "Macroscopic spray characteristics of next-generation bio-derived diesel fuels in comparison to mineral diesel," Applied Energy, Elsevier, vol. 186(P3), pages 562-573.
    3. Hoang, Anh Tuan, 2019. "Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel," Energy, Elsevier, vol. 171(C), pages 795-808.
    4. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    5. Fu, Wei & Li, Fengyu & Meng, Kesheng & Liu, Yanju & Shi, Weidong & Lin, Qizhao, 2019. "Experiment and analysis of spray characteristics of biodiesel blending with di-n-butyl ether in a direct injection combustion chamber," Energy, Elsevier, vol. 185(C), pages 77-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zandie, Mohammad & Ng, Hoon Kiat & Gan, Suyin & Muhamad Said, Mohd Farid & Cheng, Xinwei, 2022. "A comprehensive CFD study of the spray combustion, soot formation and emissions of ternary mixtures of diesel, biodiesel and gasoline under compression ignition engine-relevant conditions," Energy, Elsevier, vol. 260(C).
    2. Krystian Czernek & Marek Ochowiak & Sylwia Włodarczak, 2020. "Effect of Rheological Properties of Aqueous Solution of Na-CMC on Spray Angle for Conical Pressure-Swirl Atomizers," Energies, MDPI, vol. 13(23), pages 1-14, November.
    3. Guodong Gai & Abdellah Hadjadj & Sergey Kudriakov & Stephane Mimouni & Olivier Thomine, 2021. "Numerical Study of Spray-Induced Turbulence Using Industrial Fire-Mitigation Nozzles," Energies, MDPI, vol. 14(4), pages 1-20, February.
    4. Tian, Junjian & Liu, Yu & Bi, Haobo & Li, Fengyu & Bao, Lin & Han, Kai & Zhou, Wenliang & Ni, Zhanshi & Lin, Qizhao, 2022. "Experimental study on the spray characteristics of octanol diesel and prediction of spray tip penetration by ANN model," Energy, Elsevier, vol. 239(PA).
    5. Krystian Czernek & Michał Hyrycz & Andżelika Krupińska & Magdalena Matuszak & Marek Ochowiak & Stanisław Witczak & Sylwia Włodarczak, 2021. "State-of-the-Art Review of Effervescent-Swirl Atomizers," Energies, MDPI, vol. 14(10), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    2. Muteeb ul Haq & Ali Turab Jafry & Muhammad Salman Abbasi & Muhammad Jawad & Saad Ahmad & Taqi Ahmad Cheema & Naseem Abbas, 2022. "Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions," Energies, MDPI, vol. 15(20), pages 1-18, October.
    3. Haq, Muteeb ul & Jafry, Ali Turab & Ahmad, Saad & Cheema, Taqi Ahmad & Kamran, Muhammad & Ajab, Huma & Masjuki, Haji Hassan, 2023. "Macroscopic spray behavior in pressurized chamber alongside thermal performance of quaternary castor biodiesel with butanol and 1-butoxybutane," Energy, Elsevier, vol. 282(C).
    4. Che Mat, S. & Idroas, M.Y. & Teoh, Y.H. & Hamid, M.F. & Sharudin, H. & Pahmi, M.A.A.H., 2022. "Optimization of ternary blends among refined palm oil-hexanol-melaleuca cajuputi oil and engine emissions analysis of the blends," Renewable Energy, Elsevier, vol. 196(C), pages 451-461.
    5. EL-Seesy, Ahmed I. & Kayatas, Zafer & Hawi, Meshack & Kosaka, Hidenori & He, Zhixia, 2020. "Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 2064-2076.
    6. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    7. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    9. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    11. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    12. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    13. Van Hai Nguyen & Duc Thiep Cao & Thi Hien Do, 2019. "Research And Calculation Of The Biogas Fuel Supply System For A Small Marine Diesel Engine," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 64-70, January.
    14. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    15. Zhang, Zhicheng & Wei, Shengli & Zhang, Shaobang & Ni, Shidong, 2024. "Study of RP-3/n-butanol fuel spray characteristics and ANN prediction of spray tip penetration," Energy, Elsevier, vol. 292(C).
    16. Mohanan, Athira & Bouzidi, Laziz & Li, Shaojun & Narine, Suresh S., 2015. "Mitigating crystallization of saturated FAMES in biodiesel: 5. The unusual phase behavior of a structured triacylglycerol dimer and methyl palmitate binary system," Energy, Elsevier, vol. 93(P1), pages 1011-1021.
    17. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    18. Fu, Wei & Li, Fengyu & Meng, Kesheng & Liu, Yanju & Shi, Weidong & Lin, Qizhao, 2019. "Experiment and analysis of spray characteristics of biodiesel blending with di-n-butyl ether in a direct injection combustion chamber," Energy, Elsevier, vol. 185(C), pages 77-89.
    19. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    20. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4819-:d:413833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.