IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224034170.html
   My bibliography  Save this article

A novel graph convolutional network-based interpretable method for chiller energy consumption prediction considering the spatiotemporal coupling between variables

Author

Listed:
  • Cai, Jianyang
  • Yang, Haidong
  • Song, Cairong
  • Xu, Kangkang

Abstract

The prediction of chiller energy consumption is critical for lowering the building's energy consumption. Deep neural networks have been widely applied in this field. However, traditional deep learning methods only consider operational data and do not incorporate empirical knowledge and working condition information that are beneficial for chiller energy consumption prediction. The graph convolutional network (GCN) can handle this problem well, as it is able to incorporate empirical knowledge and working condition information into the network. However, it is important to avoid the excessive influence of empirical knowledge and working condition information on the model's accuracy. To adjust the weight of the influence of the association graph and training set on model accuracy in the GCN network, a coefficient θ was introduced. Herein, a novel GCN (θ-GCN)-based method for the energy consumption prediction of chillers is proposed. This proposed method first combines empirical knowledge and working condition information to obtain the adjacency matrix among operational data and then constructs an association graph based on this adjacency matrix. Secondly, due to the temporal correlation of the collected dataset, a gated recurrent unit (GRU) is used for feature extraction. Lastly, the features extracted through GRU are input into the constructed association graph, and the θ-GCN network is used for training and energy consumption prediction. The proposed method was experimentally verified in an actual chiller system and compared with existing methods; the outcomes indicated that the established method could obtain better prediction accuracy.

Suggested Citation

  • Cai, Jianyang & Yang, Haidong & Song, Cairong & Xu, Kangkang, 2024. "A novel graph convolutional network-based interpretable method for chiller energy consumption prediction considering the spatiotemporal coupling between variables," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034170
    DOI: 10.1016/j.energy.2024.133639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Jie & Zhang, Chaobo & Li, Junyang & Zhao, Yang & Qiu, Weikang & Li, Tingting & Zhou, Kai & He, Jianing, 2022. "Graph convolutional networks-based method for estimating design loads of complex buildings in the preliminary design stage," Applied Energy, Elsevier, vol. 322(C).
    2. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm," Energies, MDPI, vol. 12(15), pages 1-13, July.
    3. Fu, Guoyin, 2018. "Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system," Energy, Elsevier, vol. 148(C), pages 269-282.
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    5. Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
    6. Robinson, Caleb & Dilkina, Bistra & Hubbs, Jeffrey & Zhang, Wenwen & Guhathakurta, Subhrajit & Brown, Marilyn A. & Pendyala, Ram M., 2017. "Machine learning approaches for estimating commercial building energy consumption," Applied Energy, Elsevier, vol. 208(C), pages 889-904.
    7. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    8. Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
    9. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    10. Park, Junyoung & Park, Jinkyoo, 2019. "Physics-induced graph neural network: An application to wind-farm power estimation," Energy, Elsevier, vol. 187(C).
    11. Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).
    12. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    13. Yu, Min & Niu, Dongxiao & Zhao, Jinqiu & Li, Mingyu & Sun, Lijie & Yu, Xiaoyu, 2023. "Building cooling load forecasting of IES considering spatiotemporal coupling based on hybrid deep learning model," Applied Energy, Elsevier, vol. 349(C).
    14. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    15. Fan, Cheng & Wang, Jiayuan & Gang, Wenjie & Li, Shenghan, 2019. "Assessment of deep recurrent neural network-based strategies for short-term building energy predictions," Applied Energy, Elsevier, vol. 236(C), pages 700-710.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
    2. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    3. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    4. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption," Applied Energy, Elsevier, vol. 236(C), pages 574-589.
    5. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    6. Yesilyurt, Hasan & Dokuz, Yesim & Dokuz, Ahmet Sakir, 2024. "Data-driven energy consumption prediction of a university office building using machine learning algorithms," Energy, Elsevier, vol. 310(C).
    7. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    8. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    9. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    10. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    11. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
    12. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    13. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    14. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    15. Xu, Yuanjin & Li, Fei & Asgari, Armin, 2022. "Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms," Energy, Elsevier, vol. 240(C).
    16. Razak Olu-Ajayi & Hafiz Alaka & Christian Egwim & Ketty Grishikashvili, 2024. "Comprehensive Analysis of Influencing Factors on Building Energy Performance and Strategic Insights for Sustainable Development: A Systematic Literature Review," Sustainability, MDPI, vol. 16(12), pages 1-27, June.
    17. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    18. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    19. Yudong Xia & Shu Jiangzhou & Xuejun Zhang & Zhao Zhang, 2020. "Steady-State Performance Prediction for a Variable Speed Direct Expansion Air Conditioning System Using a White-Box Based Modeling Approach," Energies, MDPI, vol. 13(18), pages 1-17, September.
    20. Jia, Lizhi & Liu, Junjie & Chong, Adrian & Dai, Xilei, 2022. "Deep learning and physics-based modeling for the optimization of ice-based thermal energy systems in cooling plants," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.