IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1021-d324951.html
   My bibliography  Save this article

An Optimal Air-Conditioner On-Off Control Scheme under Extremely Hot Weather Conditions

Author

Listed:
  • Mohammed Al-Azba

    (Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar
    ICube Laboratory, Université de Strasbourg-CNRS, 67000 Strasbourg, France)

  • Zhaohui Cen

    (Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar)

  • Yves Remond

    (ICube Laboratory, Université de Strasbourg-CNRS, 67000 Strasbourg, France)

  • Said Ahzi

    (Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar)

Abstract

Being reliant on Air Conditioning (AC) throughout the majority of the year, desert countries with extremely hot weather conditions such as Qatar are facing challenges in lowering weariness cost due to AC On-Off switching while maintaining an adequate level of comfort under a wide-range of ambient temperature variations. To address these challenges, this paper investigates an optimal On-Off control strategy to improve the AC utilization process. To overcome complexities of online optimization, a Elman Neural Networks (NN)-based estimator is proposed to estimate real values of the outdoor temperature, and make off-line optimization available. By looking up the optimum values solved from an off-line optimization scheme, the proposed control solutions can adaptively regulate the indoor temperature regardless of outdoor temperature variations. In addition, a cost function of multiple objectives, which consider both Coefficient of Performance (COP), and AC compressor weariness due to On-Off switching, is designed for the optimization target of minimum cost. Unlike conventional On-Off control methodologies, the proposed On-Off control technique can respond adaptively to match large-range (up to 20 ∘ C) ambient temperature variations while overcoming the drawbacks of long-time online optimization due to heavy computational load. Finally, the Elman NN based outdoor temperature estimator is validated with an acceptable accuracy and various validations for AC control optimization under Qatar’s real outdoor temperature conditions, which include three hot seasons, are conducted and analyzed. The results demonstrate the effectiveness and robustness of the proposed optimal On-Off control solution.

Suggested Citation

  • Mohammed Al-Azba & Zhaohui Cen & Yves Remond & Said Ahzi, 2020. "An Optimal Air-Conditioner On-Off Control Scheme under Extremely Hot Weather Conditions," Energies, MDPI, vol. 13(5), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1021-:d:324951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sim, Lik Fang, 2014. "Numerical modelling of a solar thermal cooling system under arid weather conditions," Renewable Energy, Elsevier, vol. 67(C), pages 186-191.
    2. Khaled Shaaban & Deepti Muley & Dina Elnashar, 2018. "Evaluating the effect of seasonal variations on walking behaviour in a hot weather country using logistic regression," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 22(3), pages 382-391, July.
    3. Touati, Farid & Al-Hitmi, M.A. & Chowdhury, Noor Alam & Hamad, Jehan Abu & San Pedro Gonzales, Antonio J.R., 2016. "Investigation of solar PV performance under Doha weather using a customized measurement and monitoring system," Renewable Energy, Elsevier, vol. 89(C), pages 564-577.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    2. Yudong Xia & Shu Jiangzhou & Xuejun Zhang & Zhao Zhang, 2020. "Steady-State Performance Prediction for a Variable Speed Direct Expansion Air Conditioning System Using a White-Box Based Modeling Approach," Energies, MDPI, vol. 13(18), pages 1-17, September.
    3. Ferenc Szodrai, 2020. "Heat Sink Shape and Topology Optimization with Pareto-Vector Length Optimization for Air Cooling," Energies, MDPI, vol. 13(7), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
    2. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. AL-Rasheedi, Majed & Gueymard, Christian A. & Al-Khayat, Mohammad & Ismail, Alaa & Lee, Jared A. & Al-Duaj, Hamad, 2020. "Performance evaluation of a utility-scale dual-technology photovoltaic power plant at the Shagaya Renewable Energy Park in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Khaled M. Alawasa & Rashid S. AlAbri & Amer S. Al-Hinai & Mohammed H. Albadi & Abdullah H. Al-Badi, 2021. "Experimental Study on the Effect of Dust Deposition on a Car Park Photovoltaic System with Different Cleaning Cycles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    6. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
    7. Nasser Ahmad & Amith Khandakar & Amir El-Tayeb & Kamel Benhmed & Atif Iqbal & Farid Touati, 2018. "Novel Design for Thermal Management of PV Cells in Harsh Environmental Conditions," Energies, MDPI, vol. 11(11), pages 1-9, November.
    8. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    9. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    10. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    11. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    12. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    13. Park, Nochang & Kim, Ju-Hee & Kim, Hyun-A. & Moon, Jin-Chel, 2017. "Development of an algebraic model that predicts the maximum power output of solar modules including their degradation," Renewable Energy, Elsevier, vol. 113(C), pages 141-147.
    14. Seol, Sung-Hoon & Nagano, Katsunori & Togawa, Junya, 2020. "Simulation on annual performance of solar adsorption heat pump system using composite natural mesoporous material in different metrological conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1587-1604.
    15. Isabel Santiago & David Trillo Montero & Juan J. Luna Rodríguez & Isabel M. Moreno Garcia & Emilio J. Palacios Garcia, 2017. "Graphical Diagnosis of Performances in Photovoltaic Systems: A Case Study in Southern Spain," Energies, MDPI, vol. 10(12), pages 1-26, November.
    16. Khaled Shaaban, 2019. "Assessing Sidewalk and Corridor Walkability in Developing Countries," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    17. Febriani F. Ekawati & Michael J. White & Frank F. Eves, 2022. "Interrupting Pedestrians in Indonesia; Effect of Climate on Perceived Steepness and Stair Climbing Behaviour," IJERPH, MDPI, vol. 20(1), pages 1-12, December.
    18. Thanapol Promraksa & Thaned Satiennam & Wichuda Satiennam & Patiphan Kaewwichian & Nopadon Kronprasert, 2022. "Factors Influencing Stopping Locations of Motorcycle Riders on Signalized Urban Intersection Approaches," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    19. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    20. Amith Khandakar & Muhammad E. H. Chowdhury & Monzure- Khoda Kazi & Kamel Benhmed & Farid Touati & Mohammed Al-Hitmi & Antonio Jr S. P. Gonzales, 2019. "Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar," Energies, MDPI, vol. 12(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1021-:d:324951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.