IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4708-d411341.html
   My bibliography  Save this article

Machine Learning for Energy Systems

Author

Listed:
  • Denis Sidorov

    (Applied Mathematics Department, Energy Systems Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia
    Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

  • Fang Liu

    (School of Automation, Central South University, Changsha 410083, China)

  • Yonghui Sun

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

Abstract

The objective of this editorial is to overview the content of the special issue “Machine Learning for Energy Systems”. This special issue collects innovative contributions addressing the top challenges in energy systems development, including electric power systems, heating and cooling systems, and gas transportation systems. The special attention is paid to the non-standard mathematical methods integrating data-driven black box dynamical models with classic mathematical and mechanical models. The general motivation of this special issue is driven by the considerable interest in the rethinking and improvement of energy systems due to the progress in heterogeneous data acquisition, data fusion, numerical methods, machine learning, and high-performance computing. The editor of this special issue has made an attempt to publish a book containing original contributions addressing theory and various applications of machine learning in energy systems’ operation, monitoring, and design. The response to our call had 27 submissions from 11 countries (Brazil, Canada, China, Denmark, Germany, Russia, Saudi Arabia, South Korea, Taiwan, UK, and USA), of which 12 were accepted and 15 were rejected. This issue contains 11 technical articles, one review, and one editorial. It covers a broad range of topics including reliability of power systems analysis, power quality issues in railway electrification systems, test systems of transformer oil, industrial control problems in metallurgy, power control for wind turbine fatigue balancing, advanced methods for forecasting of PV output power as well as wind speed and power, control of the AC/DC hybrid power systems with renewables and storage systems, electric-gas energy systems’ risk assessment, battery’s degradation status prediction, insulators fault forecasting, and autonomous energy coordination using blockchain-based negotiation model. In addition, review of the blockchain technology for information security of the energy internet is given. We believe that this special issue will be of interest not only to academics and researchers, but also to all the engineers who are seriously concerned about the unsolved problems in contemporary power engineering, multi-energy microgrids modeling.

Suggested Citation

  • Denis Sidorov & Fang Liu & Yonghui Sun, 2020. "Machine Learning for Energy Systems," Energies, MDPI, vol. 13(18), pages 1-6, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4708-:d:411341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hua Liu & Yong Li & Yijia Cao & Zilong Zeng & Denis Sidorov, 2020. "Operational Risk Assessment of Electric-Gas Integrated Energy Systems Considering N-1 Accidents," Energies, MDPI, vol. 13(5), pages 1-16, March.
    2. Zilong Zeng & Yong Li & Yijia Cao & Yirui Zhao & Junjie Zhong & Denis Sidorov & Xiangcheng Zeng, 2020. "Blockchain Technology for Information Security of the Energy Internet: Fundamentals, Features, Strategy and Application," Energies, MDPI, vol. 13(4), pages 1-24, February.
    3. Senhui Wang & Haifeng Li & Yongjie Zhang & Zongshu Zou, 2019. "An Integrated Methodology for Rule Extraction from ELM-Based Vacuum Tank Degasser Multiclassifier for Decision-Making," Energies, MDPI, vol. 12(18), pages 1-15, September.
    4. Ruixuan Yang & Fulin Zhou & Kai Zhong, 2020. "A Harmonic Impedance Identification Method of Traction Network Based on Data Evolution Mechanism," Energies, MDPI, vol. 13(8), pages 1-15, April.
    5. Syed Naeem Haider & Qianchuan Zhao & Xueliang Li, 2020. "Cluster-Based Prediction for Batteries in Data Centers," Energies, MDPI, vol. 13(5), pages 1-17, March.
    6. Rongyong Zhao & Daheng Dong & Cuiling Li & Steven Liu & Hao Zhang & Miyuan Li & Wenzhong Shen, 2020. "An Improved Power Control Approach for Wind Turbine Fatigue Balancing in an Offshore Wind Farm," Energies, MDPI, vol. 13(7), pages 1-20, March.
    7. Fulin Zhou & Feifan Liu & Ruixuan Yang & Huanrui Liu, 2020. "Method for Estimating Harmonic Parameters Based on Measurement Data without Phase Angle," Energies, MDPI, vol. 13(4), pages 1-19, February.
    8. Denis Sidorov & Daniil Panasetsky & Nikita Tomin & Dmitriy Karamov & Aleksei Zhukov & Ildar Muftahov & Aliona Dreglea & Fang Liu & Yong Li, 2020. "Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region," Energies, MDPI, vol. 13(5), pages 1-18, March.
    9. Gangjun Gong & Zhening Zhang & Xinyu Zhang & Nawaraj Kumar Mahato & Lin Liu & Chang Su & Haixia Yang, 2020. "Electric Power System Operation Mechanism with Energy Routers Based on QoS Index under Blockchain Architecture," Energies, MDPI, vol. 13(2), pages 1-22, January.
    10. Ahmad Nayyar Hassan & Ayman El-Hag, 2020. "Two-Layer Ensemble-Based Soft Voting Classifier for Transformer Oil Interfacial Tension Prediction," Energies, MDPI, vol. 13(7), pages 1-11, April.
    11. Fang Liu & Ranran Li & Aliona Dreglea, 2019. "Wind Speed and Power Ultra Short-Term Robust Forecasting Based on Takagi–Sugeno Fuzzy Model," Energies, MDPI, vol. 12(18), pages 1-16, September.
    12. Stéfano Frizzo Stefenon & Roberto Zanetti Freire & Leandro dos Santos Coelho & Luiz Henrique Meyer & Rafael Bartnik Grebogi & William Gouvêa Buratto & Ademir Nied, 2020. "Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System," Energies, MDPI, vol. 13(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    3. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    4. Songyao Wang & Zhisheng Zhang, 2021. "Short-Term Multiple Load Forecasting Model of Regional Integrated Energy System Based on QWGRU-MTL," Energies, MDPI, vol. 14(20), pages 1-13, October.
    5. Prabha Bhola & Alexandros-Georgios Chronis & Panos Kotsampopoulos & Nikos Hatziargyriou, 2023. "Business Model Selection for Community Energy Storage: A Multi Criteria Decision Making Approach," Energies, MDPI, vol. 16(18), pages 1-30, September.
    6. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    7. Mukhamet, Tileuzhan & Kobeyev, Sultan & Nadeem, Abid & Memon, Shazim Ali, 2021. "Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations," Energy, Elsevier, vol. 215(PB).
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    9. Abokersh, Mohamed Hany & Gangwar, Sachin & Spiekman, Marleen & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2021. "Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept," Renewable Energy, Elsevier, vol. 180(C), pages 893-913.
    10. Amaral, C. & Silva, T. & Mohseni, F. & Amaral, J.S. & Amaral, V.S. & Marques, P.A.A.P. & Barros-Timmons, A. & Vicente, R., 2021. "Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material," Energy, Elsevier, vol. 216(C).
    11. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
    13. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiujiang Liu & Binghan Sun & Qinyao Yang & Mingli Wu & Tingting He, 2020. "Harmonic Overvoltage Analysis of Electric Railways in a Wide Frequency Range Based on Relative Frequency Relationships of the Vehicle–Grid Coupling System," Energies, MDPI, vol. 13(24), pages 1-16, December.
    2. Chin-Tan Lee & Shih-Cheng Horng, 2020. "Abnormality Detection of Cast-Resin Transformers Using the Fuzzy Logic Clustering Decision Tree," Energies, MDPI, vol. 13(10), pages 1-19, May.
    3. Feng Xue & Kang Chang & Wei Li & Qin Wang & Haitao Zhao & Hui Zhang & Yiyang Ni & Wenchao Xia, 2022. "Blockchain Smart Contract-Enabled Secure Energy Trading for Electric Vehicles," Energies, MDPI, vol. 15(18), pages 1-15, September.
    4. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    5. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    6. Cristina Keiko Yamaguchi & Stéfano Frizzo Stefenon & Ney Kassiano Ramos & Vanessa Silva dos Santos & Fernanda Forbici & Anne Carolina Rodrigues Klaar & Fernanda Cristina Silva Ferreira & Alessandra Ca, 2020. "Young People’s Perceptions about the Difficulties of Entrepreneurship and Developing Rural Properties in Family Agriculture," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    7. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. António Couto & Paula Costa & Teresa Simões, 2021. "Identification of Extreme Wind Events Using a Weather Type Classification," Energies, MDPI, vol. 14(13), pages 1-16, July.
    9. Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.
    10. Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
    11. Mirosław Parol & Paweł Piotrowski & Piotr Kapler & Mariusz Piotrowski, 2021. "Forecasting of 10-Second Power Demand of Highly Variable Loads for Microgrid Operation Control," Energies, MDPI, vol. 14(5), pages 1-29, February.
    12. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    13. Xiu Guan & Xiang Feng & A.Y.M. Atiquil Islam, 2023. "The dilemma and countermeasures of educational data ethics in the age of intelligence," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    14. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    15. Qiuhong Huang & Xiao Wang, 2022. "A Forecasting Model of Wind Power Based on IPSO–LSTM and Classified Fusion," Energies, MDPI, vol. 15(15), pages 1-19, July.
    16. Xiaojun Wen & Yongzhi Chen & Wei Zhang & Zoe L. Jiang & Junbin Fang, 2022. "Blockchain Consensus Mechanism Based on Quantum Teleportation," Mathematics, MDPI, vol. 10(14), pages 1-9, July.
    17. Félix Dubuisson & Miloud Rezkallah & Hussein Ibrahim & Ambrish Chandra, 2021. "Real-Time Implementation of the Predictive-Based Control with Bacterial Foraging Optimization Technique for Power Management in Standalone Microgrid Application," Energies, MDPI, vol. 14(6), pages 1-15, March.
    18. Niloofar Etemadi & Pieter Van Gelder & Fernanda Strozzi, 2021. "An ISM Modeling of Barriers for Blockchain/Distributed Ledger Technology Adoption in Supply Chains towards Cybersecurity," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    19. Yuri Bulatov & Andrey Kryukov & Andrey Batuhtin & Konstantin Suslov & Ksenia Korotkova & Denis Sidorov, 2022. "Digital Twin Formation Method for Distributed Generation Plants of Cyber–Physical Power Supply Systems," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    20. Andrea Mariscotti, 2022. "Non-Intrusive Load Monitoring Applied to AC Railways," Energies, MDPI, vol. 15(11), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4708-:d:411341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.