IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i15p2417-2433.html
   My bibliography  Save this article

Slow, fast and flash pyrolysis of rapeseed

Author

Listed:
  • Onay, Ozlem
  • Kockar, O.Mete

Abstract

Pyrolysis experiments have been conducted on a sample of rapeseed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 73% was obtained at the final pyrolysis temperature of 550–600 °C, particle size range of +0.6–1.25 mm, and sweep gas flow rate of 100 cm3min−1 (N2) at flash pyrolysis conditions in tubular transport reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from rapeseed can be used as a renewable fuel and chemical feedstock.

Suggested Citation

  • Onay, Ozlem & Kockar, O.Mete, 2003. "Slow, fast and flash pyrolysis of rapeseed," Renewable Energy, Elsevier, vol. 28(15), pages 2417-2433.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:15:p:2417-2433
    DOI: 10.1016/S0960-1481(03)00137-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810300137X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00137-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beis, S.H. & Onay, Ö. & Koçkar, Ö.M., 2002. "Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions," Renewable Energy, Elsevier, vol. 26(1), pages 21-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    2. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    3. Kim, Jae-Young & Oh, Shinyoung & Hwang, Hyewon & Moon, Youn-Ho & Choi, Joon Weon, 2014. "Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis," Energy, Elsevier, vol. 76(C), pages 284-291.
    4. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    5. Hueon Namkung & Se-In Park & Yoomin Lee & Tae Uk Han & Jun-Ik Son & Jun-Gu Kang, 2022. "Investigation of Oil and Facility Characteristics of Plastic Waste Pyrolysis for the Advanced Waste Recycling Policy," Energies, MDPI, vol. 15(12), pages 1-10, June.
    6. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    7. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    8. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    9. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Kim, Young Doo & Yang, Chang Won & Kim, Beom Jong & Kim, Kwang Su & Lee, Jeung Woo & Moon, Ji Hong & Yang, Won & Yu, Tae U & Lee, Uen Do, 2013. "Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier," Applied Energy, Elsevier, vol. 112(C), pages 414-420.
    12. Bardhan, Soubhik K. & Gupta, Shelaka & Gorman, M.E. & Haider, M. Ali, 2015. "Biorenewable chemicals: Feedstocks, technologies and the conflict with food production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 506-520.
    13. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Ni, Liangmeng & Feng, Zixing & Zhang, Tao & Gao, Qi & Hou, Yanmei & He, Yuyu & Su, Mengfu & Ren, Hao & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of pyrolysis heating rates on fuel properties of molded charcoal: Imitating industrial pyrolysis process," Renewable Energy, Elsevier, vol. 197(C), pages 257-267.
    15. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    16. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Carbon Dioxide Gasification Kinetics of Char from Rapeseed Oil Press Cake," Energies, MDPI, vol. 13(9), pages 1-12, May.
    17. Stedile, T. & Ender, L. & Meier, H.F. & Simionatto, E.L. & Wiggers, V.R, 2015. "Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 92-108.
    18. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    19. Wang, Wei-Cheng & Jan, Jyun-Jhih, 2018. "From laboratory to pilot: Design concept and techno-economic analyses of the fluidized bed fast pyrolysis of biomass," Energy, Elsevier, vol. 155(C), pages 139-151.
    20. Mishra, Asmita & Siddiqi, Hammad & Kumari, Usha & Behera, Ipsita Dipamitra & Mukherjee, Subhrajit & Meikap, B.C., 2021. "Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    21. Colantoni, A. & Evic, N. & Lord, R. & Retschitzegger, S. & Proto, A.R. & Gallucci, F. & Monarca, D., 2016. "Characterization of biochars produced from pyrolysis of pelletized agricultural residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 187-194.
    22. Choi, Hang Seok & Choi, Yeon Seok & Park, Hoon Chae, 2012. "Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions," Renewable Energy, Elsevier, vol. 42(C), pages 131-135.
    23. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    24. Zhang, Jiehan & Wang, Xinkun & Chen, Zhaohui & Zhang, Xinyu & Yue, Junrong & Zhou, Ridong & Lai, Dengguo & Yu, Jian & Li, Jianling & Xu, Guangwen, 2024. "Regulation of volatile reactions through thermal/catalytic cracking during scrap tires pyrolysis for high-valued chemicals production," Energy, Elsevier, vol. 294(C).
    25. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Kassir, A. & Gañán-Gómez, J. & Mohamad, A.A. & Cuerda-Correa, E.M., 2010. "A study of energy production from cork residues: Sawdust, sandpaper dust and triturated wood," Energy, Elsevier, vol. 35(1), pages 382-386.
    2. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    3. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    4. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Granada, Enrique & Míguez, J.L. & Febrero, Lara & Collazo, Joaquín & Eguía, Pablo, 2013. "Development of an experimental technique for oil recovery during biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 179-184.
    6. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
    7. Lohri, Christian Riuji & Rajabu, Hassan Mtoro & Sweeney, Daniel J. & Zurbrügg, Christian, 2016. "Char fuel production in developing countries – A review of urban biowaste carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1514-1530.
    8. Angelos-Ikaros Altantzis & Nikolaos-Christos Kallistridis & George Stavropoulos & Anastasia Zabaniotou, 2022. "Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: an Experimental Study," Circular Economy and Sustainability, Springer, vol. 2(1), pages 351-382, March.
    9. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    10. Sokoto, Muhammad Abdullahi & Biswas, Bijoy & Kumar, Jitendra & Bhaskar, Thallada, 2020. "Slow pyrolysis of Defatted Seeds Cakes of African star apple and silk cotton for production of bio-oil," Renewable Energy, Elsevier, vol. 146(C), pages 1710-1716.
    11. Garg, Rahul & Anand, Neeru & Kumar, Dinesh, 2016. "Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization," Renewable Energy, Elsevier, vol. 96(PA), pages 167-171.
    12. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    13. Merckel, Ryan D. & Labuschagne, Frederick J.W.J. & Heydenrych, Michael D., 2020. "Energy metrics of fuel juxtaposed with mass yield metrics," Renewable Energy, Elsevier, vol. 159(C), pages 371-379.
    14. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    15. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    16. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    18. Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:15:p:2417-2433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.