IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4256-d400214.html
   My bibliography  Save this article

Innovative Hydrodynamic Disintegrator Adjusted to Agricultural Substrates Pre-treatment Aimed at Methane Production Intensification—CFD Modelling and Batch Tests

Author

Listed:
  • Monika Zubrowska-Sudol

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland)

  • Aleksandra Dzido

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-655 Warsaw, Poland)

  • Agnieszka Garlicka

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland)

  • Piotr Krawczyk

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-655 Warsaw, Poland)

  • Michał Stępień

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-655 Warsaw, Poland)

  • Katarzyna Umiejewska

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland)

  • Justyna Walczak

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland)

  • Marcin Wołowicz

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-655 Warsaw, Poland)

  • Katarzyna Sytek-Szmeichel

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland)

Abstract

The study objective was to adjust the hydrodynamic disintegrator dedicated to sewage sludge pre-treatment (HDS) to work with agricultural substrate. This involved the development and implementation of a mathematical model of flow via the device’s domain. An innovative disintegrator (HAD—hydrodynamic disintegrator for agriculture) was designed, built, and tested based on the obtained results. The main improvements to the HDS include the implementation of shredding knives in order to overcome clogging by crushed substrate, and the application of ribs in the recirculation zone, contributing to the development of an additional structure damage zone. The challenge of this study was also to determine the operating parameters of the HDA that would provide for an increase in methane production with positive energy balance. The testing procedures, for which maize silage was selected, involved batch disintegration tests and biochemical methane potential tests. No clogging of rotor or spontaneous shutting off of the device, in other words, problems that had occurred in the HDS, were observed. The applied pre-treatment method permitted an increase in the methane potential of maize silage by 34.4%, 27.0%, and 21.6%, respectively for samples disintegrated at energy densities of 10 kJ/L, 20 kJ/L, and 35 kJ/L with net energy profit.

Suggested Citation

  • Monika Zubrowska-Sudol & Aleksandra Dzido & Agnieszka Garlicka & Piotr Krawczyk & Michał Stępień & Katarzyna Umiejewska & Justyna Walczak & Marcin Wołowicz & Katarzyna Sytek-Szmeichel, 2020. "Innovative Hydrodynamic Disintegrator Adjusted to Agricultural Substrates Pre-treatment Aimed at Methane Production Intensification—CFD Modelling and Batch Tests," Energies, MDPI, vol. 13(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4256-:d:400214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Sun-Sheng & Derakhshan, Shahram & Kong, Fan-Yu, 2012. "Theoretical, numerical and experimental prediction of pump as turbine performance," Renewable Energy, Elsevier, vol. 48(C), pages 507-513.
    2. Aleksandra Dzido & Piotr Krawczyk & Michalina Kurkus-Gruszecka, 2019. "Numerical Analysis of Dry Ice Blasting Convergent-Divergent Supersonic Nozzle," Energies, MDPI, vol. 12(24), pages 1-14, December.
    3. Pal, Amit & Verma, Ashish & Kachhwaha, S.S. & Maji, S., 2010. "Biodiesel production through hydrodynamic cavitation and performance testing," Renewable Energy, Elsevier, vol. 35(3), pages 619-624.
    4. Marcin Zieliński & Paulina Rusanowska & Aleksandra Krzywik & Magda Dudek & Anna Nowicka & Marcin Dębowski, 2019. "Application of Hydrodynamic Cavitation for Improving Methane Fermentation of Sida hermaphrodita Silage," Energies, MDPI, vol. 12(3), pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthijs H. Somers & Samet Azman & Ruud Vanhecke & Lise Appels, 2021. "Dairy Manure Digestate Age Increases Ultrasound Disintegration Efficiency at Low Specific Energies," Energies, MDPI, vol. 14(6), pages 1-15, March.
    2. Dmitry Eskin, 2022. "On CFD-Assisted Research and Design in Engineering," Energies, MDPI, vol. 15(23), pages 1-3, December.
    3. Honorata Jankowska & Aleksandra Dzido & Piotr Krawczyk, 2023. "Determination of Rheological Parameters of Non-Newtonian Fluids on an Example of Biogas Plant Substrates," Energies, MDPI, vol. 16(3), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    2. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    3. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    4. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    5. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    6. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    7. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    8. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    9. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    10. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    11. Alemi Arani, Hamed & Fathi, Mohammad & Raisee, Mehrdad & Nourbakhsh, Seyed Ahmad, 2019. "The effect of tongue geometry on pump performance in reverse mode: An experimental study," Renewable Energy, Elsevier, vol. 141(C), pages 717-727.
    12. Mario Amelio & Silvio Barbarelli & Domenico Schinello, 2020. "Review of Methods Used for Selecting Pumps as Turbines (PATs) and Predicting Their Characteristic Curves," Energies, MDPI, vol. 13(23), pages 1-20, December.
    13. Abazariyan, Sina & Rafee, Roohollah & Derakhshan, Shahram, 2018. "Experimental study of viscosity effects on a pump as turbine performance," Renewable Energy, Elsevier, vol. 127(C), pages 539-547.
    14. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    15. Pugliese, Francesco & De Paola, Francesco & Fontana, Nicola & Giugni, Maurizio & Marini, Gustavo, 2016. "Experimental characterization of two Pumps As Turbines for hydropower generation," Renewable Energy, Elsevier, vol. 99(C), pages 180-187.
    16. Li, Wei & Li, Enda & Ji, Leilei & Zhou, Ling & Shi, Weidong & Zhu, Yong, 2020. "Mechanism and propagation characteristics of rotating stall in a mixed-flow pump," Renewable Energy, Elsevier, vol. 153(C), pages 74-92.
    17. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    18. Manoujan, Amin Zarei & Riasi, Alireza, 2024. "Optimal selection of parallel pumps running as turbines for energy harvesting in water transmission lines considering economic parameters," Applied Energy, Elsevier, vol. 359(C).
    19. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    20. Maleki, Ali & Ghorani, Mohammad Mahdi & Haghighi, Mohammad Hadi Sotoude & Riasi, Alireza, 2020. "Numerical study on the effect of viscosity on a multistage pump running in reverse mode," Renewable Energy, Elsevier, vol. 150(C), pages 234-254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4256-:d:400214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.