IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1128-d1041544.html
   My bibliography  Save this article

Determination of Rheological Parameters of Non-Newtonian Fluids on an Example of Biogas Plant Substrates

Author

Listed:
  • Honorata Jankowska

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland)

  • Aleksandra Dzido

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

  • Piotr Krawczyk

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

Abstract

Non-Newtonian fluids are commonly used in a wide range of industries; one example are in biogas power plants. Proper measurements and modeling of such fluids can be crucial from the design and operations point of view. Results presented in this study covered seven samples from three plants (a sewage sludge treatment plant, utilization biogas station and a biogas plant in a sugar factory), including mechanically thickened excessive activated sludge (MTEAS), sugar beet pulp (SBP), liquid fruit and vegetable waste (FVW), beet roots (BR) and corn waste (CW); their mixtures were prepared as in a real plant. The total solid content remained below 6.8% for all samples. The apparent viscosity (15 RPM) did not exceed 10 Pas in any sample. A correlation analysis for solvent type influence on the viscosity was carried out. The obtained results were analyzed, and the Herschel–Bulkley rheological model was selected for the fluid description. Then, the Moullinex method was applied to determine the H–B model parameters. The obtained results may contribute to the proper design and operation of various biogas power plants, in which viscosity seems to be one of the crucial flow parameters that influences the device types used, as well as energy consumption.

Suggested Citation

  • Honorata Jankowska & Aleksandra Dzido & Piotr Krawczyk, 2023. "Determination of Rheological Parameters of Non-Newtonian Fluids on an Example of Biogas Plant Substrates," Energies, MDPI, vol. 16(3), pages 1-10, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1128-:d:1041544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monika Zubrowska-Sudol & Aleksandra Dzido & Agnieszka Garlicka & Piotr Krawczyk & Michał Stępień & Katarzyna Umiejewska & Justyna Walczak & Marcin Wołowicz & Katarzyna Sytek-Szmeichel, 2020. "Innovative Hydrodynamic Disintegrator Adjusted to Agricultural Substrates Pre-treatment Aimed at Methane Production Intensification—CFD Modelling and Batch Tests," Energies, MDPI, vol. 13(16), pages 1-19, August.
    2. Schneider, Nico & Gerber, Mandy, 2020. "Rheological properties of digestate from agricultural biogas plants: An overview of measurement techniques and influencing factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Eskin, 2022. "On CFD-Assisted Research and Design in Engineering," Energies, MDPI, vol. 15(23), pages 1-3, December.
    2. Wang, Xuemei & Yan, Rui & Zhao, Yuying & Cheng, Shikun & Han, Yanzhao & Yang, Shuo & Cai, Di & Mang, Heinz-Peter & Li, Zifu, 2020. "Biogas standard system in China," Renewable Energy, Elsevier, vol. 157(C), pages 1265-1273.
    3. Matthijs H. Somers & Samet Azman & Ruud Vanhecke & Lise Appels, 2021. "Dairy Manure Digestate Age Increases Ultrasound Disintegration Efficiency at Low Specific Energies," Energies, MDPI, vol. 14(6), pages 1-15, March.
    4. Beugre, Etienne Yves-Martial & Gnagne, Théophile, 2022. "Vane geometry for measurement of influent rheological behaviour in dry anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1128-:d:1041544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.