IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3960-d393318.html
   My bibliography  Save this article

Design and Development of Non-Isolated Modified SEPIC DC-DC Converter Topology for High-Step-Up Applications: Investigation and Hardware Implementation

Author

Listed:
  • Manoharan Premkumar

    (Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh 532127, India)

  • Umashankar Subramaniam

    (Renewable Energy Laboratory, Prince Sultan University, Salahuddin, Riyadh 12435, Saudi Arabia)

  • Hassan Haes Alhelou

    (Department of Electrical Power Engineering, Faculty of Mechanical and Electrical Engineering, Tishreen University, Lattakia 2230, Syria)

  • Pierluigi Siano

    (Department of Management & Innovation Systems, University of Salerno, 84084 Fisciano, Italy)

Abstract

A new non-isolated modified SEPIC front-end dc-dc converter for the low power system is proposed in this paper, and this converter is the next level of the traditional SEPIC converter with additional devices, such as two diodes and splitting of the output capacitor into two equal parts. The circuit topology proposed in this paper is formulated by combining the boost structure with the traditional SEPIC converter. Therefore, the proposed converter has the benefit of the SEPIC converter, such as continuous input current. The proposed circuit structure also improves the features, such as high voltage gain and high conversion efficiency. The converter comprises one MOSFET switch, one coupled inductor, three diodes, and two capacitors, including the output capacitor. The converter effectively recovers the leakage energy of the coupled inductor through the passive clamp circuit. The operation of the proposed converter is explained in continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The required voltage gain of the converter can be acquired by adjusting the coupled inductor turn’s ratio along with the additional devices at less duty cycle of the switch. The simulation of the proposed converter under CCM is carried out, and an experimental prototype of 100 W, 25 V/200 V is made, and the experimental outcomes are presented to validate the theoretical discussions of the proposed converter. The operating performance of the proposed converter is compared with the converters discussed in the literature. The proposed converter can be extended by connecting voltage multiplier (VM) cell circuits to get the ultra-high voltage gain.

Suggested Citation

  • Manoharan Premkumar & Umashankar Subramaniam & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Design and Development of Non-Isolated Modified SEPIC DC-DC Converter Topology for High-Step-Up Applications: Investigation and Hardware Implementation," Energies, MDPI, vol. 13(15), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3960-:d:393318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    2. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    2. Giordano Luigi Schiavon & Eloi Agostini & Claudinor Bitencourt Nascimento, 2023. "Quasi-Resonant Single-Switch High-Voltage-Gain DC-DC Converter with Coupled Inductor and Voltage Multiplier Cell," Energies, MDPI, vol. 16(9), pages 1-14, May.
    3. Phuong Nam Dao & Hong Quang Nguyen & Minh-Duc Ngo & Seon-Ju Ahn, 2020. "On Stability of Perturbed Nonlinear Switched Systems with Adaptive Reinforcement Learning," Energies, MDPI, vol. 13(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    2. Olanrewaju Lasabi & Andrew Swanson & Leigh Jarvis & Anuoluwapo Aluko & Arman Goudarzi, 2024. "Coordinated Hybrid Approach Based on Firefly Algorithm and Particle Swarm Optimization for Distributed Secondary Control and Stability Analysis of Direct Current Microgrids," Sustainability, MDPI, vol. 16(3), pages 1-28, January.
    3. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
    4. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    5. Habib Kraiem & Ezzeddine Touti & Abdulaziz Alanazi & Ahmed M. Agwa & Tarek I. Alanazi & Mohamed Jamli & Lassaad Sbita, 2023. "Parameters Identification of Photovoltaic Cell and Module Models Using Modified Social Group Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    6. Edwidge Raissa Mache Kengne & Alain Soup Tewa Kammogne & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Photovoltaic Systems Based on Average Current Mode Control: Dynamical Analysis and Chaos Suppression by Using a Non-Adaptive Feedback Outer Loop Controller," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    7. Belqasem Aljafari & Rupendra Kumar Pachauri & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2023. "Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation," Sustainability, MDPI, vol. 15(15), pages 1-28, August.
    8. Cong-Trang Nguyen & Thanh Long Duong & Minh Quan Duong & Duc Tung Le, 2020. "Chattering-Free Single-Phase Robustness Sliding Mode Controller for Mismatched Uncertain Interconnected Systems with Unknown Time-Varying Delays," Energies, MDPI, vol. 13(1), pages 1-27, January.
    9. Sy Ngo & Chian-Song Chiu & Thanh-Dong Ngo, 2022. "A Novel Horse Racing Algorithm Based MPPT Control for Standalone PV Power Systems," Energies, MDPI, vol. 15(20), pages 1-18, October.
    10. Rajvikram Madurai Elavarasan & Karthikeyan Velmurugan & Umashankar Subramaniam & A Rakesh Kumar & Dhafer Almakhles, 2020. "Experimental Investigations Conducted for the Characteristic Study of OM29 Phase Change Material and Its Incorporation in Photovoltaic Panel," Energies, MDPI, vol. 13(4), pages 1-18, February.
    11. Tarek A. Boghdady & Yasmin E. Kotb & Abdullah Aljumah & Mahmoud M. Sayed, 2022. "Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    12. Luz Adriana Trejos-Grisales & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja, 2020. "Mathematical Model for Regular and Irregular PV Arrays with Improved Calculation Speed," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    13. Pallavi Bharadwaj & Vinod John, 2021. "High-Power Closed-Loop SMPC-Based Photovoltaic System Characterization under Varying Ambient Conditions," Energies, MDPI, vol. 14(17), pages 1-19, August.
    14. Olanrewaju Lasabi & Andrew Swanson & Leigh Jarvis & Mohamed Khan & Anuoluwapo Aluko, 2024. "Hybrid Metaheuristic Secondary Distributed Control Technique for DC Microgrids," Sustainability, MDPI, vol. 16(17), pages 1-29, September.
    15. Xiaofei Li & Zhao Wang & Yinnan Liu & Haifeng Wang & Liusheng Pei & An Wu & Shuang Sun & Yongjun Lian & Honglu Zhu, 2023. "A Novel Operating State Evaluation Method for Photovoltaic Strings Based on TOPSIS and Its Application," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    16. Ali M. Eltamaly & Zeyad A. Almutairi & Mohamed A. Abdelhamid, 2023. "Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems," Energies, MDPI, vol. 16(13), pages 1-22, July.
    17. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    18. Anupama Ganguly & Pabitra Kumar Biswas & Chiranjit Sain & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Horse Herd Optimized Intelligent Controller for Sustainable PV Interface Grid-Connected System: A Qualitative Approach," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    19. Zoltan Corba & Bane Popadic & Dragan Milicevic & Boris Dumnic & Vladimir A. Katic, 2020. "A Long-Term Condition Monitoring and Performance Assessment of Grid Connected PV Power Plant with High Power Sizing Factor under Partial Shading Conditions," Energies, MDPI, vol. 13(18), pages 1-19, September.
    20. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3960-:d:393318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.