IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3216-d374334.html
   My bibliography  Save this article

Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns

Author

Listed:
  • Manoharan Premkumar

    (Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh 532127, India)

  • Umashankar Subramaniam

    (Renewable Energy Laboratory, Prince Sultan University, Salahuddin, Riyadh 12435, Saudi Arabia)

  • Thanikanti Sudhakar Babu

    (Department of Electrical Power Engineering, University Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

  • Rajvikram Madurai Elavarasan

    (Department of Electrical and Electronics Engineering, Sri Venkateswara College of Engineering, Tamil Nadu 602117, India)

  • Lucian Mihet-Popa

    (Faculty of Electrical Engineering, Ostfold University College, NO-1757 Halden, Norway)

Abstract

The analysis and the assessment of interconnected photovoltaic (PV) modules under different shading conditions and various shading patterns are presented in this paper. The partial shading conditions (PSCs) due to the various factors reduce the power output of PV arrays, and its characteristics have multiple peaks due to the mismatching losses between PV panels. The principal objective of this paper is to model, analyze, simulate and evaluate the performance of PV array topologies such as series-parallel (SP), honey-comb (HC), total-cross-tied (TCT), ladder (LD) and bridge-linked (BL) under different shading patterns to produce the maximum power by reducing the mismatching losses (MLs). Along with the conventional PV array topologies, this paper also discusses the hybrid PV array topologies such as bridge-linked honey-comb (BLHC), bridge-linked total-cross-tied (BLTCT) and series-parallel total-cross-tied (SPTCT). The performance analysis of the traditional PV array topologies along with the hybrid topologies is carried out during static and dynamic shading patterns by comparing the various parameters such as the global peak (GP), local peaks (LPs), corresponding voltage and current at GP and LPs, fill factor (FF) and ML. In addition, the voltage and current equations of the HC configuration under two shading conditions are derived, which represents one of the novelties of this paper. The various parameters of the SPR-200-BLK-U PV module are used for PV modeling and simulation in MATLAB/Simulink software. Thus, the obtained results provide useful information to the researchers for healthy operation and power maximization of PV systems.

Suggested Citation

  • Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3216-:d:374334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sai Krishna, G. & Moger, Tukaram, 2019. "Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 333-348.
    2. Deshkar, Shubhankar Niranjan & Dhale, Sumedh Bhaskar & Mukherjee, Jishnu Shekar & Babu, T. Sudhakar & Rajasekar, N., 2015. "Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 102-110.
    3. Pareek, Smita & Dahiya, Ratna, 2016. "Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules," Energy, Elsevier, vol. 95(C), pages 561-572.
    4. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
    5. Bana, Sangram & Saini, R.P., 2017. "Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios," Energy, Elsevier, vol. 127(C), pages 438-453.
    6. Qi, Jun & Zhang, Youbing & Chen, Yi, 2014. "Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions," Renewable Energy, Elsevier, vol. 66(C), pages 337-345.
    7. Dalia Yousri & Thanikanti Sudhakar Babu & Dalia Allam & Vigna. K. Ramachandaramurthy & Eman Beshr & Magdy. B. Eteiba, 2019. "Fractional Chaos Maps with Flower Pollination Algorithm for Partial Shading Mitigation of Photovoltaic Systems," Energies, MDPI, vol. 12(18), pages 1-27, September.
    8. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    9. Kandemir, Ekrem & Cetin, Numan S. & Borekci, Selim, 2017. "A comprehensive overview of maximum power extraction methods for PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 93-112.
    10. Bhatnagar, Pallavee & Nema, R.K., 2013. "Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 224-241.
    11. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    12. Malathy, S. & Ramaprabha, R., 2015. "Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 672-679.
    13. Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja & Giovanni Petrone & Giovanni Spagnuolo, 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions," Energies, MDPI, vol. 11(4), pages 1-17, March.
    14. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    15. Silvestre, S. & Boronat, A. & Chouder, A., 2009. "Study of bypass diodes configuration on PV modules," Applied Energy, Elsevier, vol. 86(9), pages 1632-1640, September.
    16. Muhannad Alshareef & Zhengyu Lin & Mingyao Ma & Wenping Cao, 2019. "Accelerated Particle Swarm Optimization for Photovoltaic Maximum Power Point Tracking under Partial Shading Conditions," Energies, MDPI, vol. 12(4), pages 1-18, February.
    17. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    18. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    19. Mohammadmehdi Seyedmahmoudian & Saad Mekhilef & Rasoul Rahmani & Rubiyah Yusof & Ehsan Taslimi Renani, 2013. "Analytical Modeling of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 6(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manoharan Premkumar & Umashankar Subramaniam & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Design and Development of Non-Isolated Modified SEPIC DC-DC Converter Topology for High-Step-Up Applications: Investigation and Hardware Implementation," Energies, MDPI, vol. 13(15), pages 1-27, August.
    2. Edwidge Raissa Mache Kengne & Alain Soup Tewa Kammogne & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Photovoltaic Systems Based on Average Current Mode Control: Dynamical Analysis and Chaos Suppression by Using a Non-Adaptive Feedback Outer Loop Controller," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    3. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    4. Tarek A. Boghdady & Yasmin E. Kotb & Abdullah Aljumah & Mahmoud M. Sayed, 2022. "Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    5. Sy Ngo & Chian-Song Chiu & Thanh-Dong Ngo, 2022. "A Novel Horse Racing Algorithm Based MPPT Control for Standalone PV Power Systems," Energies, MDPI, vol. 15(20), pages 1-18, October.
    6. Anupama Ganguly & Pabitra Kumar Biswas & Chiranjit Sain & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Horse Herd Optimized Intelligent Controller for Sustainable PV Interface Grid-Connected System: A Qualitative Approach," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    7. Ali M. Eltamaly & Zeyad A. Almutairi & Mohamed A. Abdelhamid, 2023. "Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems," Energies, MDPI, vol. 16(13), pages 1-22, July.
    8. Luz Adriana Trejos-Grisales & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja, 2020. "Mathematical Model for Regular and Irregular PV Arrays with Improved Calculation Speed," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    9. Habib Kraiem & Ezzeddine Touti & Abdulaziz Alanazi & Ahmed M. Agwa & Tarek I. Alanazi & Mohamed Jamli & Lassaad Sbita, 2023. "Parameters Identification of Photovoltaic Cell and Module Models Using Modified Social Group Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    10. Pallavi Bharadwaj & Vinod John, 2021. "High-Power Closed-Loop SMPC-Based Photovoltaic System Characterization under Varying Ambient Conditions," Energies, MDPI, vol. 14(17), pages 1-19, August.
    11. Zoltan Corba & Bane Popadic & Dragan Milicevic & Boris Dumnic & Vladimir A. Katic, 2020. "A Long-Term Condition Monitoring and Performance Assessment of Grid Connected PV Power Plant with High Power Sizing Factor under Partial Shading Conditions," Energies, MDPI, vol. 13(18), pages 1-19, September.
    12. Xiaofei Li & Zhao Wang & Yinnan Liu & Haifeng Wang & Liusheng Pei & An Wu & Shuang Sun & Yongjun Lian & Honglu Zhu, 2023. "A Novel Operating State Evaluation Method for Photovoltaic Strings Based on TOPSIS and Its Application," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    13. Belqasem Aljafari & Rupendra Kumar Pachauri & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2023. "Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation," Sustainability, MDPI, vol. 15(15), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    2. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    3. Xiaoguang Liu & Yuefeng Wang, 2019. "Reconfiguration Method to Extract More Power from Partially Shaded Photovoltaic Arrays with Series-Parallel Topology," Energies, MDPI, vol. 12(8), pages 1-16, April.
    4. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    5. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Chong, Benjamin & Zhang, Li, 2017. "Seven indicators variations for multiple PV array configurations under partial shading and faulty PV conditions," Renewable Energy, Elsevier, vol. 113(C), pages 438-460.
    6. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    8. Malathy, S. & Ramaprabha, R., 2018. "Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2922-2934.
    9. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    10. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    11. Belqasem Aljafari & Rupendra Kumar Pachauri & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2023. "Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation," Sustainability, MDPI, vol. 15(15), pages 1-28, August.
    12. Yadav, Anurag Singh & Mukherjee, V., 2022. "Comprehensive investigation of various bypass diode associations for killer-SuDoKu PV array under several shading conditions," Energy, Elsevier, vol. 239(PB).
    13. Alexander Abramovitz & Doron Shmilovitz, 2021. "Short Survey of Architectures of Photovoltaic Arrays for Solar Power Generation Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    14. Krishna, G.Sai & Moger, Tukaram, 2019. "Enhancement of maximum power output through reconfiguration techniques under non-uniform irradiance conditions," Energy, Elsevier, vol. 187(C).
    15. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    16. Jena, Debashisha & Ramana, Vanjari Venkata, 2015. "Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 400-417.
    17. Mehedi, I.M. & Salam, Z. & Ramli, M.Z. & Chin, V.J. & Bassi, H. & Rawa, M.J.H. & Abdullah, M.P., 2021. "Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. Bana, Sangram & Saini, R.P., 2017. "Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios," Energy, Elsevier, vol. 127(C), pages 438-453.
    19. Yadav, Vinod Kumar & Behera, Anwesh Devratna & Singh, Ranjeet & Maheshwari, Anubhav & Ghosh, Santosh & Prakash, Abhijeet, 2023. "A novel PV array reconfiguration technique based on circular array data structure," Energy, Elsevier, vol. 283(C).
    20. Sampath Kumar Vankadara & Shamik Chatterjee & Praveen Kumar Balachandran, 2022. "An accurate analytical modeling of solar photovoltaic system considering Rs and Rsh under partial shaded condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2472-2481, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3216-:d:374334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.