IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7498-d939932.html
   My bibliography  Save this article

A Novel Horse Racing Algorithm Based MPPT Control for Standalone PV Power Systems

Author

Listed:
  • Sy Ngo

    (Institute of Engineering and Technology, Thu Dau Mot University, Thu Dau Mot 7500, Vietnam)

  • Chian-Song Chiu

    (Department of Electrical Engineering, Chung Yuan Christian University, Taoyuan 230314, Taiwan)

  • Thanh-Dong Ngo

    (Institute of Engineering and Technology, Thu Dau Mot University, Thu Dau Mot 7500, Vietnam)

Abstract

This paper proposes a novel maximum power point tracking (MPPT) method inspired by the horse racing game for standalone photovoltaic (PV) power systems, such that the highest PV power conversion efficiency is obtained. From the horse racing game rules, we develop the horse racing algorithm (HRA) with the qualifying stage and final ranking stage. The MPP can be searched even if there exist multiple local MPPs for the PV power system. Moreover, from the proposed horse racing algorithm, the calculation is reduced, so that the transient searching points are less than traditional methods, i.e., the transient oscillation is less during the MPPT control. Therefore, the HRA based MPPT method avoids local maximum power traps and achieves the MPP quickly even if considering partial shading influence and varying environment for PV panels. Evidence of the accuracy and effectiveness of the proposed HRA method is exhibited by simulation results. These results are also compared with typical particle swarm optimization (PSO) and grey wolf optimization (GWO) methods and shown better convergence time as well as transient oscillation. Within the range from 0.34 to 0.58 s, the proposed method has effectively tracked the global maximum power point, which is from 0.42 to 0.48 s faster than the conventional PSO technique and from 0.36 to 0.74 s faster than the GWO method. Finally, the obtained findings proved the effectiveness and superiority of the proposed HRA technique through experimental results. The fast response in terms of good transient oscillation and global power tracking time of the proposed method are from 0.40 to 1.0 s, while the PSO and GWO methods are from 1.56 to 1.6 s and from 1.9 to 2.2 s, respectively.

Suggested Citation

  • Sy Ngo & Chian-Song Chiu & Thanh-Dong Ngo, 2022. "A Novel Horse Racing Algorithm Based MPPT Control for Standalone PV Power Systems," Energies, MDPI, vol. 15(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7498-:d:939932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noureddine Bouarroudj & Djamel Boukhetala & Vicente Feliu-Batlle & Fares Boudjema & Boualam Benlahbib & Bachir Batoun, 2019. "Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System," Energies, MDPI, vol. 12(14), pages 1-19, July.
    2. Abhishek Sharma & Abhinav Sharma & Vibhu Jately & Moshe Averbukh & Shailendra Rajput & Brian Azzopardi, 2022. "A Novel TSA-PSO Based Hybrid Algorithm for GMPP Tracking under Partial Shading Conditions," Energies, MDPI, vol. 15(9), pages 1-21, April.
    3. Hongyang He & Zhigang Lu & Xiaoqiang Guo & Changli Shi & Dongqiang Jia & Chao Chen & Josep M. Guerrero, 2022. "Optimized Control Strategy for Photovoltaic Hydrogen Generation System with Particle Swarm Algorithm," Energies, MDPI, vol. 15(4), pages 1-17, February.
    4. Ibrahim Al-Wesabi & Zhijian Fang & Hassan M. Hussein Farh & Abdullrahman A. Al-Shamma’a & Abdullah M. Al-Shaalan & Tarek Kandil & Min Ding, 2022. "Cuckoo Search Combined with PID Controller for Maximum Power Extraction of Partially Shaded Photovoltaic System," Energies, MDPI, vol. 15(7), pages 1-26, March.
    5. Sampath Kumar Vankadara & Shamik Chatterjee & Praveen Kumar Balachandran & Lucian Mihet-Popa, 2022. "Marine Predator Algorithm (MPA)-Based MPPT Technique for Solar PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 15(17), pages 1-16, August.
    6. Nouman Akram & Laiq Khan & Shahrukh Agha & Kamran Hafeez, 2022. "Global Maximum Power Point Tracking of Partially Shaded PV System Using Advanced Optimization Techniques," Energies, MDPI, vol. 15(11), pages 1-29, May.
    7. Ezhilmaran Ranganathan & Rajasekar Natarajan, 2022. "Spotted Hyena Optimization Method for Harvesting Maximum PV Power under Uniform and Partial-Shade Conditions," Energies, MDPI, vol. 15(8), pages 1-26, April.
    8. Novie Ayub Windarko & Muhammad Nizar Habibi & Bambang Sumantri & Eka Prasetyono & Moh. Zaenal Efendi & Taufik, 2021. "A New MPPT Algorithm for Photovoltaic Power Generation under Uniform and Partial Shading Conditions," Energies, MDPI, vol. 14(2), pages 1-22, January.
    9. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    10. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    11. Shahzad Ahmed & Hafiz Mian Muhammad Adil & Iftikhar Ahmad & Muhammad Kashif Azeem & Zil e Huma & Safdar Abbas Khan, 2020. "Supertwisting Sliding Mode Algorithm Based Nonlinear MPPT Control for a Solar PV System with Artificial Neural Networks Based Reference Generation," Energies, MDPI, vol. 13(14), pages 1-24, July.
    12. Abdelilah Chalh & Aboubakr El Hammoumi & Saad Motahhir & Abdelaziz El Ghzizal & Umashankar Subramaniam & Aziz Derouich, 2020. "Trusted Simulation Using Proteus Model for a PV System: Test Case of an Improved HC MPPT Algorithm," Energies, MDPI, vol. 13(8), pages 1-12, April.
    13. Slimane Hadji & Jean-Paul Gaubert & Fateh Krim, 2018. "Real-Time Genetic Algorithms-Based MPPT: Study and Comparison (Theoretical an Experimental) with Conventional Methods," Energies, MDPI, vol. 11(2), pages 1-17, February.
    14. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    15. Mingrui Zhang & Zheyang Chen & Li Wei, 2019. "An Immune Firefly Algorithm for Tracking the Maximum Power Point of PV Array under Partial Shading Conditions," Energies, MDPI, vol. 12(16), pages 1-15, August.
    16. CH Hussaian Basha & C Rani, 2020. "Different Conventional and Soft Computing MPPT Techniques for Solar PV Systems with High Step-Up Boost Converters: A Comprehensive Analysis," Energies, MDPI, vol. 13(2), pages 1-27, January.
    17. Ali M. Eltamaly, 2021. "An Improved Cuckoo Search Algorithm for Maximum Power Point Tracking of Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao Zhang & Keyu Zhuang & Tong Zhao & Jingze Xue & Yunlong Gao & Shuai Cui & Zheng Qiao, 2022. "MPPT Control Algorithm Based on Particle Swarm Optimization and Adaptive Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahra Bel Hadj Salah & Saber Krim & Mohamed Ali Hajjaji & Badr M. Alshammari & Khalid Alqunun & Ahmed Alzamil & Tawfik Guesmi, 2023. "A New Efficient Cuckoo Search MPPT Algorithm Based on a Super-Twisting Sliding Mode Controller for Partially Shaded Standalone Photovoltaic System," Sustainability, MDPI, vol. 15(12), pages 1-38, June.
    2. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    3. Hsen Abidi & Lilia Sidhom & Ines Chihi, 2023. "Systematic Literature Review and Benchmarking for Photovoltaic MPPT Techniques," Energies, MDPI, vol. 16(8), pages 1-45, April.
    4. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    5. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    6. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    7. Kostas Bavarinos & Anastasios Dounis & Panagiotis Kofinas, 2021. "Maximum Power Point Tracking Based on Reinforcement Learning Using Evolutionary Optimization Algorithms," Energies, MDPI, vol. 14(2), pages 1-23, January.
    8. Cheng-En Ye & Cheng-Chi Tai & Yu-Pei Huang, 2023. "Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology," Energies, MDPI, vol. 16(13), pages 1-16, June.
    9. Miaomiao Ma & Xiangjie Liu & Kwang Y. Lee, 2020. "Maximum Power Point Tracking and Voltage Regulation of Two-Stage Grid-Tied PV System Based on Model Predictive Control," Energies, MDPI, vol. 13(6), pages 1-16, March.
    10. Tamir Shaqarin, 2023. "Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    11. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    12. Ehab Mohamed Ali & Ahmed K. Abdelsalam & Karim H. Youssef & Ahmed A. Hossam-Eldin, 2021. "An Enhanced Cuckoo Search Algorithm Fitting for Photovoltaic Systems’ Global Maximum Power Point Tracking under Partial Shading Conditions," Energies, MDPI, vol. 14(21), pages 1-21, November.
    13. Amit Kumar Sharma & Rupendra Kumar Pachauri & Sushabhan Choudhury & Ahmad Faiz Minai & Majed A. Alotaibi & Hasmat Malik & Fausto Pedro García Márquez, 2023. "Role of Metaheuristic Approaches for Implementation of Integrated MPPT-PV Systems: A Comprehensive Study," Mathematics, MDPI, vol. 11(2), pages 1-48, January.
    14. Ali M. Eltamaly & Zeyad A. Almutairi & Mohamed A. Abdelhamid, 2023. "Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems," Energies, MDPI, vol. 16(13), pages 1-22, July.
    15. Eduardo Manuel Godinho Rodrigues & Radu Godina & Mousa Marzband & Edris Pouresmaeil, 2018. "Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity," Energies, MDPI, vol. 11(11), pages 1-21, October.
    16. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Maen Takruri & Maissa Farhat & Oscar Barambones & José Antonio Ramos-Hernanz & Mohammed Jawdat Turkieh & Mohammed Badawi & Hanin AlZoubi & Maswood Abdus Sakur, 2020. "Maximum Power Point Tracking of PV System Based on Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, February.
    18. Mohamed Ali Zdiri & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Abdulaziz Almalaq & Fatma Ben Salem & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System," Energies, MDPI, vol. 15(11), pages 1-20, June.
    19. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    20. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7498-:d:939932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.