IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p877-d211556.html
   My bibliography  Save this article

Permanent-Magnet Synchronous Motor Sensorless Control Using Proportional-Integral Linear Observer with Virtual Variables: A Comparative Study with a Sliding Mode Observer

Author

Listed:
  • Baochao Wang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Yangrui Wang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Liguo Feng

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Shanlin Jiang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Qian Wang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Jianhui Hu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Quick convergence, simple implementation, and accurate estimation are essential features of realizing permanent-magnet synchronous motor (PMSM) position estimation for sensorless control using microcontrollers. A linear observer is often designed on real plant variables and is more sensitive to parameter uncertainty/variations. Thus, conventionally, a sliding mode observer (SMO)-based technique is widely used for its simplicity and convergence ability against parameter uncertainty. Although SMO has been improved for switching chattering and phase delay, it provides purely proportional gain, which leads to steady-state error and chattering in observation results. Different from conventional linear observer using real plant variables or SMO with proportional gain, a simple proportional-integral linear observer (PILO) using virtual variables is proposed in this paper. This paper also provides a comparative study with SMO. By introducing virtual variables without physical meaning, the PILO is able to simplify observer relations, get smaller phase shifts, adapt mismatched parameters, and obtain a fixed phase-shift relation. The PILO is not only simple, but also improves the estimation precision by solving the controversy between chattering and phase-delay, steady-state error. Moreover, the PILO is less sensitive to parameters mismatching. Simulation and experimental results indicate the merits of the PILO technique.

Suggested Citation

  • Baochao Wang & Yangrui Wang & Liguo Feng & Shanlin Jiang & Qian Wang & Jianhui Hu, 2019. "Permanent-Magnet Synchronous Motor Sensorless Control Using Proportional-Integral Linear Observer with Virtual Variables: A Comparative Study with a Sliding Mode Observer," Energies, MDPI, vol. 12(5), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:877-:d:211556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jyun-You Chen & Shih-Chin Yang & Kai-Hsiang Tu, 2018. "Comparative Evaluation of a Permanent Magnet Machine Saliency-Based Drive with Sine-Wave and Square-Wave Voltage Injection," Energies, MDPI, vol. 11(9), pages 1-15, August.
    2. Joon B. Park & Xin Wang, 2018. "Sensorless Direct Torque Control of Surface-Mounted Permanent Magnet Synchronous Motors with Nonlinear Kalman Filtering," Energies, MDPI, vol. 11(4), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Benevieri & Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2022. "Surface Permanent Magnet Synchronous Motors’ Passive Sensorless Control: A Review," Energies, MDPI, vol. 15(20), pages 1-26, October.
    2. He Wang & Tao Wu & Youguang Guo & Gang Lei & Xinmei Wang, 2023. "Predictive Current Control of Sensorless Linear Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Chen & Xiao Zhang & Xiang Wu & Guojun Tan & Xianchao Chen, 2019. "Sensorless Control for IPMSM Based on Adaptive Super-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop," Energies, MDPI, vol. 12(7), pages 1-19, March.
    2. Tao Liu & Qiaoling Tong & Qiao Zhang & Qidong Li & Linkai Li & Zhaoxuan Wu, 2018. "A Method to Improve the Response of a Speed Loop by Using a Reduced-Order Extended Kalman Filter," Energies, MDPI, vol. 11(11), pages 1-16, October.
    3. Bowei Zou & Yougui Guo & Xi Xiao & Bowen Yang & Xiao Wang & Mingzhang Shi & Yulin Tu, 2020. "Performance Improvement of Matrix Converter Direct Torque Control System," Energies, MDPI, vol. 13(12), pages 1-17, June.
    4. Junlei Chen & Shuo Chen & Xiang Wu & Guojun Tan & Jianqi Hao, 2019. "A Super-Twisting Sliding-Mode Stator Flux Observer for Sensorless Direct Torque and Flux Control of IPMSM," Energies, MDPI, vol. 12(13), pages 1-17, July.
    5. Qi Wang & Haitao Yu & Min Wang & Xinbo Qi, 2018. "A Novel Adaptive Neuro-Control Approach for Permanent Magnet Synchronous Motor Speed Control," Energies, MDPI, vol. 11(9), pages 1-21, September.
    6. Jongwon Choi, 2021. "Regression Model-Based Flux Observer for IPMSM Sensorless Control with Wide Speed Range," Energies, MDPI, vol. 14(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:877-:d:211556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.