IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3149-d372844.html
   My bibliography  Save this article

Pressure Loss Reduction in an Innovative Directional Poppet Control Valve

Author

Listed:
  • Grzegorz Filo

    (Faculty of Mechanical Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland)

  • Edward Lisowski

    (Faculty of Mechanical Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland)

  • Janusz Rajda

    (PONAR Wadowice, Wojska Polskiego 29, 34-100 Wadowice, Poland)

Abstract

This article presents the results of computational fluid dynamics (CFD) analysis of an innovative directional control valve consisting of four poppet seat valves and two electromagnets enclosed inside a single body. The valve has a unique design, allowing the use of any poppet valve configuration. Both normally opened (NO) and normally closed (NC) seat valves can be applied. The combination of four universal valve seats and two electromagnets gives a wide range of flow path configurations. This significantly increases the possibility of practical applications. However, due to the significant miniaturization of the valve body and the requirement to obtain necessary connections between flow paths, multiple geometrically complex channels had to be made inside the body. Hence, the main purpose of work was to shape the geometry of the flow channels in such a way as to minimize pressure losses. During the CFD analyses velocity distribution in flow channels and pressure distribution on the walls were determined. The results were used to obtain pressure loss as a function of flow rate, which was then verified by means of laboratory experiments conducted on a test bench.

Suggested Citation

  • Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2020. "Pressure Loss Reduction in an Innovative Directional Poppet Control Valve," Energies, MDPI, vol. 13(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3149-:d:372844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Tamburrano & Andrew R. Plummer & Pietro De Palma & Elia Distaso & Riccardo Amirante, 2020. "A Novel Servovalve Pilot Stage Actuated by a Piezo-electric Ring Bender: A Numerical and Experimental Analysis," Energies, MDPI, vol. 13(3), pages 1-24, February.
    2. Patrick M. Stump & Nathan Keller & Andrea Vacca, 2019. "Energy Management of Low-Pressure Systems Utilizing Pump-Unloading Valve and Accumulator," Energies, MDPI, vol. 12(23), pages 1-17, November.
    3. Paolo Tamburrano & Andrew R. Plummer & Pietro De Palma & Elia Distaso & Riccardo Amirante, 2020. "A Novel Servovalve Pilot Stage Actuated by a Piezo-Electric Ring Bender (Part II): Design Model and Full Simulation," Energies, MDPI, vol. 13(9), pages 1-24, May.
    4. Mohammed El-Adawy & Morgan R. Heikal & A. Rashid A. Aziz & Muhammad I. Siddiqui & Shahzad Munir, 2017. "Characterization of the Inlet Port Flow under Steady-State Conditions Using PIV and POD," Energies, MDPI, vol. 10(12), pages 1-16, November.
    5. Endashaw Tesfaye Woldemariam & Hirpa G. Lemu & G. Gary Wang, 2018. "CFD-Driven Valve Shape Optimization for Performance Improvement of a Micro Cross-Flow Turbine," Energies, MDPI, vol. 11(1), pages 1-18, January.
    6. Ivan Gomez & Andrés Gonzalez-Mancera & Brittany Newell & Jose Garcia-Bravo, 2019. "Analysis of the Design of a Poppet Valve by Transitory Simulation," Energies, MDPI, vol. 12(5), pages 1-18, March.
    7. Zhaohui Jin & Wei Hong & Tian You & Yan Su & Xiaoping Li & Fangxi Xie, 2020. "Effect of Multi-Factor Coupling on the Movement Characteristics of the Hydraulic Variable Valve Actuation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2021. "Advances in Fluid Power Systems," Energies, MDPI, vol. 14(24), pages 1-6, December.
    2. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2022. "Analysis of Energy Loss on a Tunable Check Valve through the Numerical Simulation," Energies, MDPI, vol. 15(15), pages 1-17, August.
    3. Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2021. "Design and Flow Analysis of an Adjustable Check Valve by Means of CFD Method," Energies, MDPI, vol. 14(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2021. "Design and Flow Analysis of an Adjustable Check Valve by Means of CFD Method," Energies, MDPI, vol. 14(8), pages 1-14, April.
    2. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2022. "Analysis of Energy Loss on a Tunable Check Valve through the Numerical Simulation," Energies, MDPI, vol. 15(15), pages 1-17, August.
    3. Paolo Tamburrano & Francesco Sciatti & Andrew R. Plummer & Elia Distaso & Pietro De Palma & Riccardo Amirante, 2021. "A Review of Novel Architectures of Servovalves Driven by Piezoelectric Actuators," Energies, MDPI, vol. 14(16), pages 1-23, August.
    4. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    5. Paolo Tamburrano & Andrew R. Plummer & Pietro De Palma & Elia Distaso & Riccardo Amirante, 2020. "A Novel Servovalve Pilot Stage Actuated by a Piezo-Electric Ring Bender (Part II): Design Model and Full Simulation," Energies, MDPI, vol. 13(9), pages 1-24, May.
    6. Jinghui Peng & Yayun Zhang & Songjing Li & Wen Bao & Yutaka Tanaka, 2023. "Identification Algorithm and Improvement of Modal Damping Ratios for Armature Assembly in a Hydraulic Servo-Valve with Magnetic Fluid," Energies, MDPI, vol. 16(8), pages 1-13, April.
    7. Shizhen Li & Jiawei Du & Zilin Shi & Ke Xu & Wenzhuo Shi, 2022. "Characteristics Analysis of the Pilot-Operated Proportional Directional Valve by Experimental and Numerical Investigation," Energies, MDPI, vol. 15(24), pages 1-17, December.
    8. Zhenyang Zhang & Hongwei Ma, 2019. "Particle Image Velocimetry (PIV) Investigation of Blade and Purge Flow Impacts on Inter-Stage Flow Field in a Research Turbine," Energies, MDPI, vol. 12(7), pages 1-21, April.
    9. Mohammed El-Adawy & Morgan R. Heikal & A. Rashid A. Aziz & Ibrahim Khalil Adam & Mhadi A. Ismael & Mohammed E. Babiker & Masri B. Baharom & Firmansyah & Ezrann Zharif Zainal Abidin, 2018. "On the Application of Proper Orthogonal Decomposition (POD) for In-Cylinder Flow Analysis," Energies, MDPI, vol. 11(9), pages 1-22, August.
    10. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    11. Lei Shi & Hongwei Ma & Lixiang Wang, 2019. "Analysis of Different POD Processing Methods for SPIV-Measurements in Compressor Cascade Tip Leakage Flow," Energies, MDPI, vol. 12(6), pages 1-25, March.
    12. Rong Guo & Rennian Li & Renhui Zhang, 2018. "Reconstruction and Prediction of Flow Field Fluctuation Intensity and Flow-Induced Noise in Impeller Domain of Jet Centrifugal Pump Using Gappy POD Method," Energies, MDPI, vol. 12(1), pages 1-17, December.
    13. Lukasz Stawinski & Jakub Zaczynski & Adrian Morawiec & Justyna Skowronska & Andrzej Kosucki, 2021. "Energy Consumption Structure and Its Improvement of Low-Lifting Capacity Scissor Lift," Energies, MDPI, vol. 14(5), pages 1-14, March.
    14. Marcellin Perceau & Philippe Guibert & Stéphane Guilain, 2021. "Flow Field Parametric Interpolation Using a Proper Orthogonal Decomposition: Application to the Variable Valve Timing Effect on a Tumble In-cylinder Miller Engine Mean Flow," Energies, MDPI, vol. 14(17), pages 1-18, August.
    15. Jana Hoffmann & Walter Vera-Tudela & Niklas Mirsch & Dario Wüthrich & Bruno Schneider & Marco Günther & Stefan Pischinger & Daniel A. Weiss & Kai Herrmann, 2023. "Investigation of Flow Fields Emanating from Two Parallel Inlet Valves Using LES, PIV, and POD," Energies, MDPI, vol. 16(19), pages 1-29, September.
    16. Mehr, Goodarz & Durali, Mohammad & Khakrand, Mohammad Hadi & Hoghooghi, Hadi, 2021. "A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations," Renewable Energy, Elsevier, vol. 169(C), pages 1402-1421.
    17. Zhang, Wei & Chen, Zhaohui & Duan, Qiwang & Jiang, Qianyu, 2021. "Visual test and evolutionary analysis of flow fields in cylinder of helical intake port diesel engine," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3149-:d:372844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.