IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2261-d166283.html
   My bibliography  Save this article

On the Application of Proper Orthogonal Decomposition (POD) for In-Cylinder Flow Analysis

Author

Listed:
  • Mohammed El-Adawy

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia)

  • Morgan R. Heikal

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia
    The Advanced Engineering Centre based at the Sir Harry Ricardo Laboratories, University of Brighton, Brighton BN2 4GJ, UK)

  • A. Rashid A. Aziz

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia)

  • Ibrahim Khalil Adam

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia)

  • Mhadi A. Ismael

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia)

  • Mohammed E. Babiker

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia)

  • Masri B. Baharom

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia)

  • Firmansyah

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia)

  • Ezrann Zharif Zainal Abidin

    (Centre for Automotive Research and Electric Mobility, Mechanical Engineering Department, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia)

Abstract

Proper orthogonal decomposition (POD) is a coherent structure identification technique based on either measured or computed data sets. Recently, POD has been adopted for the analysis of the in-cylinder flows inside internal combustion engines. In this study, stereoscopic particle image velocimetry (Stereo-PIV) measurements were carried out at the central vertical tumble plane inside an engine cylinder to acquire the velocity vector fields for the in-cylinder flow under different experimental conditions. Afterwards, the POD analysis were performed firstly on synthetic velocity vector fields with known characteristics in order to extract some fundamental properties of the POD technique. These data were used to reveal how the physical properties of coherent structures were captured and distributed among the POD modes, in addition to illustrate the difference between subtracting and non-subtracting the ensemble average prior to conducting POD on datasets. Moreover, two case studies for the in-cylinder flow at different valve lifts and different pressure differences across the air intake valves were presented and discussed as the effect of both valve lifts and pressure difference have not been investigated before using phase-invariant POD analysis. The results demonstrated that for repeatable flow pattern, only the first mode was sufficient to reconstruct the physical properties of the flow. Furthermore, POD analysis confirmed the negligible effect of pressure difference and subsequently the effect of engine speed on flow structures.

Suggested Citation

  • Mohammed El-Adawy & Morgan R. Heikal & A. Rashid A. Aziz & Ibrahim Khalil Adam & Mhadi A. Ismael & Mohammed E. Babiker & Masri B. Baharom & Firmansyah & Ezrann Zharif Zainal Abidin, 2018. "On the Application of Proper Orthogonal Decomposition (POD) for In-Cylinder Flow Analysis," Energies, MDPI, vol. 11(9), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2261-:d:166283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    2. Mohammed El-Adawy & Morgan R. Heikal & A. Rashid A. Aziz & Muhammad I. Siddiqui & Shahzad Munir, 2017. "Characterization of the Inlet Port Flow under Steady-State Conditions Using PIV and POD," Energies, MDPI, vol. 10(12), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Shi & Hongwei Ma & Lixiang Wang, 2019. "Analysis of Different POD Processing Methods for SPIV-Measurements in Compressor Cascade Tip Leakage Flow," Energies, MDPI, vol. 12(6), pages 1-25, March.
    2. Marcellin Perceau & Philippe Guibert & Stéphane Guilain, 2021. "Flow Field Parametric Interpolation Using a Proper Orthogonal Decomposition: Application to the Variable Valve Timing Effect on a Tumble In-cylinder Miller Engine Mean Flow," Energies, MDPI, vol. 14(17), pages 1-18, August.
    3. Stefan Posch & Clemens Gößnitzer & Andreas B. Ofner & Gerhard Pirker & Andreas Wimmer, 2022. "Modeling Cycle-to-Cycle Variations of a Spark-Ignited Gas Engine Using Artificial Flow Fields Generated by a Variational Autoencoder," Energies, MDPI, vol. 15(7), pages 1-16, March.
    4. Jana Hoffmann & Niklas Mirsch & Walter Vera-Tudela & Dario Wüthrich & Jorim Rosenberg & Marco Günther & Stefan Pischinger & Daniel A. Weiss & Kai Herrmann, 2023. "Flow Field Investigation of a Single Engine Valve Using PIV, POD, and LES," Energies, MDPI, vol. 16(5), pages 1-31, March.
    5. Clemens Gößnitzer & Shawn Givler, 2021. "A New Method to Determine the Impact of Individual Field Quantities on Cycle-to-Cycle Variations in a Spark-Ignited Gas Engine," Energies, MDPI, vol. 14(14), pages 1-14, July.
    6. Ravi Velugula & Balasubramanian Thiruvallur loganathan & Lakshminarasimhan Varadhaiyengar & Ramesh Asvathanarayanan & Mayank Mittal, 2023. "An Analysis of Mechanical and Thermal Stresses, Temperature and Displacement within the Transparent Cylinder and Piston Top of a Small Direct-Injection Spark-Ignition Optical Engine," Energies, MDPI, vol. 16(21), pages 1-25, November.
    7. Zhang, Wei & Chen, Zhaohui & Duan, Qiwang & Jiang, Qianyu, 2021. "Visual test and evolutionary analysis of flow fields in cylinder of helical intake port diesel engine," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazar, Hanbey & Gul, Hakan, 2016. "Modeling analysis of chrome carbide (Cr3C2) coating on parts of combustion chamber of a SI engine," Energy, Elsevier, vol. 115(P1), pages 76-87.
    2. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).
    3. Zhenyang Zhang & Hongwei Ma, 2019. "Particle Image Velocimetry (PIV) Investigation of Blade and Purge Flow Impacts on Inter-Stage Flow Field in a Research Turbine," Energies, MDPI, vol. 12(7), pages 1-21, April.
    4. Han, Dong & Wang, Chunhai & Duan, Yaozong & Tian, Zhisong & Huang, Zhen, 2014. "An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system," Energy, Elsevier, vol. 75(C), pages 513-519.
    5. Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
    6. Yang, Jie & Dong, Xue & Wu, Qiang & Xu, Min, 2019. "Effects of enhanced tumble ratios on the in-cylinder performance of a gasoline direct injection optical engine," Applied Energy, Elsevier, vol. 236(C), pages 137-146.
    7. Wang, Du & Ji, Changwei & Wang, Shuofeng & Meng, Hao & Yang, Jinxin, 2019. "Chemical effects of CO2 dilution on CH4 and H2 spherical flame," Energy, Elsevier, vol. 185(C), pages 316-326.
    8. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    9. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Daniela Misul & Mirko Baratta & Jiajie Xu & Alois Fuerhapter & Rene Heindl, 2023. "Experimental and CFD Investigation of Fuel Mixing in an Optical-Access Direct-Injection NG Engine and Correlation with Test Rig Combustion and Performance Data," Energies, MDPI, vol. 16(7), pages 1-19, March.
    11. Song, Jingeun & Kim, Taehoon & Jang, Jihwan & Park, Sungwook, 2015. "Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine," Energy, Elsevier, vol. 93(P2), pages 1758-1768.
    12. Lei Shi & Hongwei Ma & Lixiang Wang, 2019. "Analysis of Different POD Processing Methods for SPIV-Measurements in Compressor Cascade Tip Leakage Flow," Energies, MDPI, vol. 12(6), pages 1-25, March.
    13. Rong Guo & Rennian Li & Renhui Zhang, 2018. "Reconstruction and Prediction of Flow Field Fluctuation Intensity and Flow-Induced Noise in Impeller Domain of Jet Centrifugal Pump Using Gappy POD Method," Energies, MDPI, vol. 12(1), pages 1-17, December.
    14. Bogarra, M. & Herreros, J.M. & Tsolakis, A. & York, A.P.E. & Millington, P.J., 2016. "Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming," Applied Energy, Elsevier, vol. 180(C), pages 245-255.
    15. Marcellin Perceau & Philippe Guibert & Stéphane Guilain, 2021. "Flow Field Parametric Interpolation Using a Proper Orthogonal Decomposition: Application to the Variable Valve Timing Effect on a Tumble In-cylinder Miller Engine Mean Flow," Energies, MDPI, vol. 14(17), pages 1-18, August.
    16. Jana Hoffmann & Walter Vera-Tudela & Niklas Mirsch & Dario Wüthrich & Bruno Schneider & Marco Günther & Stefan Pischinger & Daniel A. Weiss & Kai Herrmann, 2023. "Investigation of Flow Fields Emanating from Two Parallel Inlet Valves Using LES, PIV, and POD," Energies, MDPI, vol. 16(19), pages 1-29, September.
    17. Yu, Xiumin & Wang, Tianqi & Guo, Zezhou & Zhao, Zhe & Li, Decheng & Li, Yinan & Gong, Tianyang, 2024. "Effect of exhaust gas recirculation(EGR) on combustion and emission of butanol/gasoline combined injection engine," Energy, Elsevier, vol. 295(C).
    18. Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2020. "Pressure Loss Reduction in an Innovative Directional Poppet Control Valve," Energies, MDPI, vol. 13(12), pages 1-13, June.
    19. Zhang, Wei & Chen, Zhaohui & Duan, Qiwang & Jiang, Qianyu, 2021. "Visual test and evolutionary analysis of flow fields in cylinder of helical intake port diesel engine," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2261-:d:166283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.