IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2237-d537636.html
   My bibliography  Save this article

Design and Flow Analysis of an Adjustable Check Valve by Means of CFD Method

Author

Listed:
  • Grzegorz Filo

    (Faculty of Mechanical Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland)

  • Edward Lisowski

    (Faculty of Mechanical Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland)

  • Janusz Rajda

    (PONAR Wadowice, Wojska Polskiego 29, 34-100 Wadowice, Poland)

Abstract

The article presents results of research on an adjustable check valve. In particular, the article deals with improvement of flow characteristics and reduction in pressure losses of an existing valve design. The subject of the research was the valve body in the form of a steel block intended for mounting a typical cartridge valve insert. Two variants of the valve body were analysed: a standard one, which is currently in production, and the proposed new solution, in which the geometry was modified based on the results of CFD simulations. The main research task was to properly shape and arrange holes and flow channels inside the body, between the cartridge valve and the connecting plate. Using CFD analyses, a solution for minimising the flow resistance was sought and then the method of modifying flow channels geometry was developed. The CFD simulation results showed a significant reduction in pressure loss, up to 40%. The obtained simulation results were verified on a test bench using a prototype of the proposed valve block. A high degree of consistency in the results of CFD simulations and laboratory experiments was achieved. The relative difference between simulation and experimental results in the entire considered range of the flow rate did not exceed 6.0 %.

Suggested Citation

  • Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2021. "Design and Flow Analysis of an Adjustable Check Valve by Means of CFD Method," Energies, MDPI, vol. 14(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2237-:d:537636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Zhen-hao & Li, Jun-ye & Jin, Zhi-jiang & Qian, Jin-yuan, 2021. "Fluid dynamic analysis of liquefied natural gas flow through a cryogenic ball valve in liquefied natural gas receiving stations," Energy, Elsevier, vol. 226(C).
    2. Jianjun Ye & Zhenhua Zhao & Jinyang Zheng & Shehab Salem & Jiangcun Yu & Junxu Cui & Xiaoyi Jiao, 2020. "Transient Flow Characteristic of High-Pressure Hydrogen Gas in Check Valve during the Opening Process," Energies, MDPI, vol. 13(16), pages 1-16, August.
    3. Ivan Gomez & Andrés Gonzalez-Mancera & Brittany Newell & Jose Garcia-Bravo, 2019. "Analysis of the Design of a Poppet Valve by Transitory Simulation," Energies, MDPI, vol. 12(5), pages 1-18, March.
    4. Zhaohui Jin & Wei Hong & Tian You & Yan Su & Xiaoping Li & Fangxi Xie, 2020. "Effect of Multi-Factor Coupling on the Movement Characteristics of the Hydraulic Variable Valve Actuation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    5. Endashaw Tesfaye Woldemariam & Hirpa G. Lemu & G. Gary Wang, 2018. "CFD-Driven Valve Shape Optimization for Performance Improvement of a Micro Cross-Flow Turbine," Energies, MDPI, vol. 11(1), pages 1-18, January.
    6. Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2020. "Pressure Loss Reduction in an Innovative Directional Poppet Control Valve," Energies, MDPI, vol. 13(12), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2022. "Analysis of Energy Loss on a Tunable Check Valve through the Numerical Simulation," Energies, MDPI, vol. 15(15), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2022. "Analysis of Energy Loss on a Tunable Check Valve through the Numerical Simulation," Energies, MDPI, vol. 15(15), pages 1-17, August.
    2. Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2020. "Pressure Loss Reduction in an Innovative Directional Poppet Control Valve," Energies, MDPI, vol. 13(12), pages 1-13, June.
    3. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    4. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2021. "Advances in Fluid Power Systems," Energies, MDPI, vol. 14(24), pages 1-6, December.
    5. Shizhen Li & Jiawei Du & Zilin Shi & Ke Xu & Wenzhuo Shi, 2022. "Characteristics Analysis of the Pilot-Operated Proportional Directional Valve by Experimental and Numerical Investigation," Energies, MDPI, vol. 15(24), pages 1-17, December.
    6. Dai, Rui & Tian, Ran & Zheng, Siyu & Wei, Mingshan & Shi, GuoHua, 2022. "Dynamic performance evaluation of LNG vaporization system integrated with solar-assisted heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 561-572.
    7. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    8. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2024. "Adjustment of Proportional Control Valve Characteristics via Pressure Compensation Using Flow Forces," Energies, MDPI, vol. 17(7), pages 1-19, March.
    9. Zhang, Xinbiao & Xie, Yudong & Han, Jiazhen & Wang, Yong, 2022. "Design of control valve with low energy consumption based on Isight platform," Energy, Elsevier, vol. 239(PD).
    10. Tang, Yang & Zhou, Minghai & Liu, Xiang & Li, Guangyao & Wang, Qiang & Wang, Guorong, 2023. "Study on throttling pressure control flow field for traction speed regulation and braking mechanism of the pipeline intelligent plugging robot," Energy, Elsevier, vol. 282(C).
    11. Zhang, Guang & Wang, Wei Wei & Wu, Ze Yong & Chen, De Sheng & Kim, Heuy Dong & Lin, Zhe, 2023. "Effect of the opening degree on evolution of cryogenic cavitation through a butterfly valve," Energy, Elsevier, vol. 283(C).
    12. Mehr, Goodarz & Durali, Mohammad & Khakrand, Mohammad Hadi & Hoghooghi, Hadi, 2021. "A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations," Renewable Energy, Elsevier, vol. 169(C), pages 1402-1421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2237-:d:537636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.