IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2614-d360998.html
   My bibliography  Save this article

Cost–Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, and Demand Management: A Western Australian Case Study

Author

Listed:
  • Behnaz Behi

    (Discipline of Engineering and Energy, Murdoch University, Murdoch 6150, Australia)

  • Ali Baniasadi

    (Discipline of Engineering and Energy, Murdoch University, Murdoch 6150, Australia)

  • Ali Arefi

    (Discipline of Engineering and Energy, Murdoch University, Murdoch 6150, Australia)

  • Arian Gorjy

    (Yaran Property Group, South Perth 6151, Australia)

  • Philip Jennings

    (Discipline of Engineering and Energy, Murdoch University, Murdoch 6150, Australia)

  • Almantas Pivrikas

    (Discipline of Engineering and Energy, Murdoch University, Murdoch 6150, Australia)

Abstract

Achieving the renewable energy integration target will require the extensive engagement of consumers and the private sector in investment and operation of renewable-based energy systems. Virtual power plants are an efficient way to implement this engagement. In this paper, the detailed costs and benefits of implementing a realistic virtual power plant (VPP) in Western Australia, comprising 67 dwellings, are calculated. The VPP is designed to integrate and coordinate rooftop solar photovoltaic panels (PV), vanadium redox flow batteries (VRFB), heat pump hot water systems (HWSs), and demand management mechanisms. An 810-kW rooftop solar PV system is designed and located using the HelioScope software. The charging and the discharging of a 700-kWh VRFB are scheduled for everyday use over a year using an optimization algorithm, to maximize the benefit of it for the VPP owners and for the residents. The use of heat pump HWSs provides a unique opportunity for the residents to save energy and reduce the total cost of electricity along with demand management on some appliances. The cost-and-benefit analysis shows that the cost of energy will be reduced by 24% per dwelling in the context of the VPP. Moreover, the internal rate of return for the VPP owner is at least 11% with a payback period of about 8.5 years, which is a promising financial outcome.

Suggested Citation

  • Behnaz Behi & Ali Baniasadi & Ali Arefi & Arian Gorjy & Philip Jennings & Almantas Pivrikas, 2020. "Cost–Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, and Demand Management: A Western Australian Case Study," Energies, MDPI, vol. 13(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2614-:d:360998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marszal-Pomianowska, Anna & Heiselberg, Per & Kalyanova Larsen, Olena, 2016. "Household electricity demand profiles – A high-resolution load model to facilitate modelling of energy flexible buildings," Energy, Elsevier, vol. 103(C), pages 487-501.
    2. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.
    3. Wang, Han & Riaz, Shariq & Mancarella, Pierluigi, 2020. "Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization," Applied Energy, Elsevier, vol. 259(C).
    4. Kody T. Ponds & Ali Arefi & Ali Sayigh & Gerard Ledwich, 2018. "Aggregator of Demand Response for Renewable Integration and Customer Engagement: Strengths, Weaknesses, Opportunities, and Threats," Energies, MDPI, vol. 11(9), pages 1-20, September.
    5. Moreno, Blanca & Díaz, Guzmán, 2019. "The impact of virtual power plant technology composition on wholesale electricity prices: A comparative study of some European Union electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 100-108.
    6. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    7. Terreros, O. & Spreitzhofer, J. & Basciotti, D. & Schmidt, R.R. & Esterl, T. & Pober, M. & Kerschbaumer, M. & Ziegler, M., 2020. "Electricity market options for heat pumps in rural district heating networks in Austria," Energy, Elsevier, vol. 196(C).
    8. Hany Elgamal, Ahmed & Kocher-Oberlehner, Gudrun & Robu, Valentin & Andoni, Merlinda, 2019. "Optimization of a multiple-scale renewable energy-based virtual power plant in the UK," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Asad & Farrukh Ibne Mahmood & Ilaria Baffo & Alessandro Mauro & Antonella Petrillo, 2022. "The Cost Benefit Analysis of Commercial 100 MW Solar PV: The Plant Quaid-e-Azam Solar Power Pvt Ltd," Sustainability, MDPI, vol. 14(5), pages 1-13, March.
    2. Thomas Adisorn & Lena Tholen & Johannes Thema & Hauke Luetkehaus & Sibylle Braungardt & Katja Huenecke & Katja Schumacher, 2020. "Towards a More Realistic Cost–Benefit Analysis—Attempting to Integrate Transaction Costs and Energy Efficiency Services," Energies, MDPI, vol. 14(1), pages 1-15, December.
    3. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Behnaz Behi & Ali Arefi & Philip Jennings & Arian Gorjy & Almantas Pivrikas, 2021. "Advanced Monitoring and Control System for Virtual Power Plants for Enabling Customer Engagement and Market Participation," Energies, MDPI, vol. 14(4), pages 1-19, February.
    5. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements," Energies, MDPI, vol. 14(4), pages 1-14, February.
    6. Behnaz Behi & Philip Jennings & Ali Arefi & Ali Azizivahed & Almantas Pivrikas & S. M. Muyeen & Arian Gorjy, 2023. "A Robust Participation in the Load Following Ancillary Service and Energy Markets for a Virtual Power Plant in Western Australia," Energies, MDPI, vol. 16(7), pages 1-20, March.
    7. Xukun Zhang & Fancheng Meng & Linquan Sun & Zhaowu Zhu & Desheng Chen & Lina Wang, 2022. "Influence of Several Phosphate-Containing Additives on the Stability and Electrochemical Behavior of Positive Electrolytes for Vanadium Redox Flow Battery," Energies, MDPI, vol. 15(21), pages 1-14, October.
    8. Guntram Pressmair & Christof Amann & Klemens Leutgöb, 2021. "Business Models for Demand Response: Exploring the Economic Limits for Small- and Medium-Sized Prosumers," Energies, MDPI, vol. 14(21), pages 1-28, October.
    9. Charalampos Papadopoulos & Athanasios Bachoumis & Niki Skopetou & Costas Mylonas & Nikolaos Tagkoulis & Petros Iliadis & Ioannis Mamounakis & Nikolaos Nikolopoulos, 2023. "Integrated Methodology for Community-Oriented Energy Investments: Architecture, Implementation, and Assessment for the Case of Nisyros Island," Energies, MDPI, vol. 16(19), pages 1-20, September.
    10. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    11. Michal Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyla & Jarosław Szymańda & Przemysław Janik, 2020. "A Case Study on Power Quality in a Virtual Power Plant: Long Term Assessment and Global Index Application," Energies, MDPI, vol. 13(24), pages 1-20, December.
    12. Dominika Kaczorowska & Jacek Rezmer & Michal Jasinski & Tomasz Sikorski & Vishnu Suresh & Zbigniew Leonowicz & Pawel Kostyla & Jaroslaw Szymanda & Przemyslaw Janik, 2020. "A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics," Energies, MDPI, vol. 13(24), pages 1-22, December.
    13. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    14. Myada Shadoul & Razzaqul Ahshan & Rashid S. AlAbri & Abdullah Al-Badi & Mohammed Albadi & Mohsin Jamil, 2022. "A Comprehensive Review on a Virtual-Synchronous Generator: Topologies, Control Orders and Techniques, Energy Storages, and Applications," Energies, MDPI, vol. 15(22), pages 1-27, November.
    15. Tomasz Popławski & Sebastian Dudzik & Piotr Szeląg & Janusz Baran, 2021. "A Case Study of a Virtual Power Plant (VPP) as a Data Acquisition Tool for PV Energy Forecasting," Energies, MDPI, vol. 14(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnaz Behi & Ali Arefi & Philip Jennings & Arian Gorjy & Almantas Pivrikas, 2021. "Advanced Monitoring and Control System for Virtual Power Plants for Enabling Customer Engagement and Market Participation," Energies, MDPI, vol. 14(4), pages 1-19, February.
    2. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    3. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Xiong, Chang & Su, Yixin & Wang, Hao & Dong, Zhengcheng & Tian, Meng & Shi, Binghua, 2024. "Consensus-based decentralized scheduling method for collaborative operation in seaport virtual power plant," Applied Energy, Elsevier, vol. 373(C).
    5. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    6. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    7. Khalil Gholami & Behnaz Behi & Ali Arefi & Philip Jennings, 2022. "Grid-Forming Virtual Power Plants: Concepts, Technologies and Advantages," Energies, MDPI, vol. 15(23), pages 1-26, November.
    8. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    9. Lygnerud, Kristina & Ottosson, Jonas & Kensby, Johan & Johansson, Linnea, 2021. "Business models combining heat pumps and district heating in buildings generate cost and emission savings," Energy, Elsevier, vol. 234(C).
    10. Yin, Shuangrui & Ai, Qian & Li, Jiamei & Li, Da & Guo, Qinglei, 2022. "Trading mode design for a virtual power plant based on main-side consortium blockchains," Applied Energy, Elsevier, vol. 325(C).
    11. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    12. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    13. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    15. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    16. You, Zhengjie & Lumpp, Sebastian Dirk & Doepfert, Markus & Tzscheutschler, Peter & Goebel, Christoph, 2024. "Leveraging flexibility of residential heat pumps through local energy markets," Applied Energy, Elsevier, vol. 355(C).
    17. Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
    18. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    19. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    20. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2614-:d:360998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.