IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2471-d358072.html
   My bibliography  Save this article

Geometry-Load Based Hybrid Correction Method for the Pre-Deformation Design of a Steam Turbine Blade

Author

Listed:
  • Guodong Yi

    (State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Huifang Zhou

    (State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Lemiao Qiu

    (State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Jundi Wu

    (State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

Abstract

To solve the problem of the slow convergence of the geometry-based correction (GC) method in the design of a steam turbine blade, this paper proposes a geometry-load-based hybrid correction (GLHC) method. In this method, the deformation of the blade caused by the centrifugal load is still corrected by the GC method, while the deformation caused by the aerodynamic load is corrected by the load-based correction (LC) method instead of the GC method. The LC method updates the cold shape of the blade by reversely applying the aerodynamic load to the ideal shape according to the balance between the internal force generated by the deformation of the blade and the aerodynamic load acting on surface of the hot blade shape, thereby reducing the number of iterations by reducing the shape deviation in each step of the iteration. The GLHC method, which combines the GC and LC methods, is used to improve the design process. The efficiency of the GLHC and GC methods are compared with the maximum number of position deviations of the corresponding mesh nodes between the hot blade and ideal blade shapes, which acts as the criterion. The results show that the GLHC method reduces the number of iterations.

Suggested Citation

  • Guodong Yi & Huifang Zhou & Lemiao Qiu & Jundi Wu, 2020. "Geometry-Load Based Hybrid Correction Method for the Pre-Deformation Design of a Steam Turbine Blade," Energies, MDPI, vol. 13(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2471-:d:358072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Choi, Wonjoon & Kang, Haeyong & Baek, Taehyun, 1999. "A turbine-blade balancing problem," International Journal of Production Economics, Elsevier, vol. 60(1), pages 405-410, April.
    2. Kamoun, Badreddine & Afungchui, David & Abid, Malek, 2006. "The inverse design of the wind turbine blade sections by the singularities method," Renewable Energy, Elsevier, vol. 31(13), pages 2091-2107.
    3. Brahimi, F. & Ouibrahim, A., 2016. "Blade dynamical response based on aeroelastic analysis of fluid structure interaction in turbomachinery," Energy, Elsevier, vol. 115(P1), pages 986-995.
    4. Li, Lei & Jiao, Jiangkun & Sun, Shouyi & Zhao, Zhenan & Kang, Jialei, 2019. "Aerodynamic shape optimization of a single turbine stage based on parameterized Free-Form Deformation with mapping design parameters," Energy, Elsevier, vol. 169(C), pages 444-455.
    5. Han, Xu & Zeng, Wei & Han, Zhonghe, 2019. "Investigation of the comprehensive performance of turbine stator cascades with heating endwall fences," Energy, Elsevier, vol. 174(C), pages 1188-1199.
    6. Guodong Yi & Huifang Zhou & Lemiao Qiu & Jundi Wu, 2020. "Hot Blade Shape Reconstruction Considering Variable Stiffness and Unbalanced Load in a Steam Turbine," Energies, MDPI, vol. 13(4), pages 1-17, February.
    7. Kim, Bumsuk & Kim, Woojune & Lee, Sanglae & Bae, Sungyoul & Lee, Youngho, 2013. "Developement and verification of a performance based optimal design software for wind turbine blades," Renewable Energy, Elsevier, vol. 54(C), pages 166-172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guodong Yi & Huifang Zhou & Lemiao Qiu & Jundi Wu, 2020. "Hot Blade Shape Reconstruction Considering Variable Stiffness and Unbalanced Load in a Steam Turbine," Energies, MDPI, vol. 13(4), pages 1-17, February.
    2. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    3. Wang, Zhiduo & Feng, Zhenping & Zhang, Xiaobo & Peng, Jingbo & Zhang, Fei & Wu, Xing, 2022. "Improving cooling performance and robustness of NGV endwall film cooling design using micro-scale ribs considering incidence effects," Energy, Elsevier, vol. 253(C).
    4. Hu, Pengfei & Meng, Qingqiang & Fan, Tiantian & Cao, Lihua & Li, Qi, 2023. "Dynamic response of turbine blade considering a droplet-wall interaction in wet steam region," Energy, Elsevier, vol. 265(C).
    5. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    6. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    7. Qing Xu & Aqiang Lin & Yuhang Cai & Naseem Ahmad & Yu Duan & Chen Liu, 2020. "Numerical Analysis of Aerodynamic Characteristics of Exhaust Passage with Consideration of Wet Steam Effect in a Supercritical Steam Turbine," Energies, MDPI, vol. 13(7), pages 1-15, March.
    8. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    9. Momeni Dolatabadi, Amir & Moslehi, Jamshid & Saffari Pour, Mohsen & Mousavi Ajarostaghi, Seyed Soheil & Poncet, Sébastien & Arıcı, Müslüm, 2022. "Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets," Energy, Elsevier, vol. 242(C).
    10. Sang-Lae Lee & SangJoon Shin, 2020. "Wind Turbine Blade Optimal Design Considering Multi-Parameters and Response Surface Method," Energies, MDPI, vol. 13(7), pages 1-23, April.
    11. Tahani, Mojtaba & Kavari, Ghazale & Masdari, Mehran & Mirhosseini, Mojtaba, 2017. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions," Energy, Elsevier, vol. 131(C), pages 78-91.
    12. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    13. Ansari, Mehran & Esfahanian, Vahid & Izadi, Mohammad Javad & Bashi, Hosein & Tavakoli, Alireza & Kordi, Mohammad, 2023. "Implementation of hot steam injection in steam turbine design: A novel mean-line method coupled with multi-objective optimization and neural network," Energy, Elsevier, vol. 283(C).
    14. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    15. Xue, Zhanpu & Wang, Wei & Fang, Liqing & Zhou, Jingbo, 2020. "Numerical simulation on structural dynamics of 5 MW wind turbine," Renewable Energy, Elsevier, vol. 162(C), pages 222-233.
    16. Jie Zhu & Xin Cai & Rongrong Gu, 2016. "Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades," Energies, MDPI, vol. 9(2), pages 1-18, January.
    17. Nikolić, Vlastimir & Sajjadi, Shahin & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko & Por, Lip Yee, 2016. "Design and state of art of innovative wind turbine systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 258-265.
    18. Du, Weikang & Zhao, Yongsheng & He, Yanping & Liu, Yadong, 2016. "Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines," Renewable Energy, Elsevier, vol. 97(C), pages 414-421.
    19. Yan, Jie & Nuertayi, Akejiang & Yan, Yamin & Liu, Shan & Liu, Yongqian, 2023. "Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine," Renewable Energy, Elsevier, vol. 215(C).
    20. Han, Zhonghe & Xiang, Peng, 2020. "Modeling condensate throttling to improve the load change performance of cogeneration units," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2471-:d:358072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.