IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032091.html
   My bibliography  Save this article

Dynamic response of turbine blade considering a droplet-wall interaction in wet steam region

Author

Listed:
  • Hu, Pengfei
  • Meng, Qingqiang
  • Fan, Tiantian
  • Cao, Lihua
  • Li, Qi

Abstract

The high-speed impact of liquid droplets on blades in wet steam region seriously affects the safe operation of steam turbine. For blade stability and response characteristics, most studies utilized ideal gas as working medium and few studies focused on the role of droplets in the flow field. In this study, both the distribution information of droplet particles in the flow field and the impact of droplet particles on blades were comprehensively considered. First, the droplet distribution at the last stage inlet was calculated, and then the droplet-wall interaction model was determined and loaded into calculation process. The pressure distribution on blade surface, blade force variation, mechanical properties, and further dynamic response characteristics of blade were analyzed with ideal gas and wet steam models, respectively, by using one-/two-way fluid-structure interaction. Results show that the blade displacement of leading and trailing edges under wet steam model reaches the maximum at near 80% blade height, and there is a low frequency amplitude corresponding to 460 Hz–470 Hz with the peak value in the range of 22Pa–26Pa. The variations of the maximum displacement and maximum equivalent stress of the blade with time are more intense under wet steam model compared with those under ideal gas model.

Suggested Citation

  • Hu, Pengfei & Meng, Qingqiang & Fan, Tiantian & Cao, Lihua & Li, Qi, 2023. "Dynamic response of turbine blade considering a droplet-wall interaction in wet steam region," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032091
    DOI: 10.1016/j.energy.2022.126323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yuzhang & Li, Yixing & Weng, Shilie & Wang, Yonghong, 2007. "Numerical simulation of counter-flow spray saturator for humid air turbine cycle," Energy, Elsevier, vol. 32(5), pages 852-860.
    2. Wang, Ziman & Guo, Hengjie & Wang, Chongming & Xu, Hongming & Li, Yanfei, 2017. "Microscopic level study on the spray impingement process and characteristics," Applied Energy, Elsevier, vol. 197(C), pages 114-123.
    3. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    4. Brahimi, F. & Ouibrahim, A., 2016. "Blade dynamical response based on aeroelastic analysis of fluid structure interaction in turbomachinery," Energy, Elsevier, vol. 115(P1), pages 986-995.
    5. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Pengfei & Liang, Qi & Fan, Tiantian & Wang, Yanhong & Li, Qi, 2024. "Investigation of heterogeneous condensation flow characteristics in the steam turbine based on homogeneous-heterogeneous condensation coupling model using OpenFOAM," Energy, Elsevier, vol. 296(C).
    2. Hosseini, Seyed Ali & Lakzian, Esmail & Zarei, Daryoush & Zare, Mehdi, 2024. "Design and optimization of slot number in supercooled vapor suction in steam turbine blades for reducing the wetness," Energy, Elsevier, vol. 301(C).
    3. Islamova, A.G. & Shlegel, N.E. & Strizhak, P.A., 2024. "Influence of collision conditions between aerosol flows of liquid droplets and solid particles typical for wet vortex dust collectors," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    2. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    4. Xingyu Liang & Hongsheng Zhang & Gequn Shu & Yuesen Wang & Xiuxiu Sun & Hanzhengnan Yu & Ming Ge, 2018. "Experimental Investigation on Effect of Wall Roughness and Lubricant Film on the Adhered Fuel Film of N-Butanol-Diesel Blends after Spray Impingement," Energies, MDPI, vol. 11(6), pages 1-14, June.
    5. Zhang, Guojie & Wang, Xiaogang & Wiśniewski, Piotr & Chen, Jiaheng & Qin, Xiang & Dykas, Sławomir, 2023. "Effect of NaCl presence caused by salting out on the heterogeneous-homogeneous coupling non-equilibrium condensation flow in a steam turbine cascade," Energy, Elsevier, vol. 263(PE).
    6. Momeni Dolatabadi, Amir & Moslehi, Jamshid & Saffari Pour, Mohsen & Mousavi Ajarostaghi, Seyed Soheil & Poncet, Sébastien & Arıcı, Müslüm, 2022. "Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets," Energy, Elsevier, vol. 242(C).
    7. Ansari, Mehran & Esfahanian, Vahid & Izadi, Mohammad Javad & Bashi, Hosein & Tavakoli, Alireza & Kordi, Mohammad, 2023. "Implementation of hot steam injection in steam turbine design: A novel mean-line method coupled with multi-objective optimization and neural network," Energy, Elsevier, vol. 283(C).
    8. Zhao, Hongbin & Yue, Pengxiu, 2011. "Performance analysis of humid air turbine cycle with solar energy for methanol decomposition," Energy, Elsevier, vol. 36(5), pages 2372-2380.
    9. Wang, Zidong & Chen, Hanping & Weng, Shilie, 2013. "New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air," Energy, Elsevier, vol. 58(C), pages 606-616.
    10. Hosseini, Seyed Ali & Lakzian, Esmail & Zarei, Daryoush & Zare, Mehdi, 2024. "Design and optimization of slot number in supercooled vapor suction in steam turbine blades for reducing the wetness," Energy, Elsevier, vol. 301(C).
    11. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    12. Guodong Yi & Huifang Zhou & Lemiao Qiu & Jundi Wu, 2020. "Hot Blade Shape Reconstruction Considering Variable Stiffness and Unbalanced Load in a Steam Turbine," Energies, MDPI, vol. 13(4), pages 1-17, February.
    13. Dolatabadi, Amir Momeni & Lakzian, Esmail & Heydari, Mahdi & Khan, Afrasyab, 2022. "A modified model of the suction technique of wetness reducing in wet steam flow considering power-saving," Energy, Elsevier, vol. 238(PA).
    14. Chen, Yanlin & Li, Xiangrong & Li, Xiaolun & Zhao, Weihua & Liu, Fushui, 2019. "The wall-flow-guided and interferential interactions of the lateral swirl combustion system for improving the fuel/air mixing and combustion performance in DI diesel engines," Energy, Elsevier, vol. 166(C), pages 690-700.
    15. Maria Elena Diego & Muhammad Akram & Jean‐Michel Bellas & Karen N. Finney & Mohamed Pourkashanian, 2017. "Making gas‐CCS a commercial reality: The challenges of scaling up," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 778-801, October.
    16. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    17. Wang, Youhao & Sun, Lihui & Guo, Chang & He, Suoying & Gao, Ming & Xu, Qinghua & Zhang, Qiang, 2023. "Vibration characteristics and strength analysis of two-stage variable-pitch axial-flow fan based on fluid-solid coupling method," Energy, Elsevier, vol. 284(C).
    18. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
    19. Wang, Zidong & Chen, Hanping & Weng, Shilie, 2013. "Revised Dalton's method for calculation of thermodynamic properties of unsaturated humid air and gas mixture after combustion in humid air turbine cycle," Energy, Elsevier, vol. 58(C), pages 594-605.
    20. Mahdi Erfanian Nakhchi & Shine Win Naung & Mohammad Rahmati, 2023. "Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes," Energies, MDPI, vol. 16(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.