Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.122951
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dolatabadi, Amir Momeni & Lakzian, Esmail & Heydari, Mahdi & Khan, Afrasyab, 2022. "A modified model of the suction technique of wetness reducing in wet steam flow considering power-saving," Energy, Elsevier, vol. 238(PA).
- Jie Song & Qiang Li & Xiaofeng Wang & Jingyuan Li & Shuai Zhang & Jørgen Kjems & Flemming Besenbacher & Mingdong Dong, 2014. "Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
- Mirhoseini, Mohadeseh Sadat & Boroomand, Masoud, 2017. "Multi-objective optimization of hot steam injection variables to control wetness parameters of steam flow within nozzles," Energy, Elsevier, vol. 141(C), pages 1027-1037.
- Han, Xu & Zeng, Wei & Han, Zhonghe, 2019. "Investigation of the comprehensive performance of turbine stator cascades with heating endwall fences," Energy, Elsevier, vol. 174(C), pages 1188-1199.
- Vatanmakan, Masoud & Lakzian, Esmail & Mahpeykar, Mohammad Reza, 2018. "Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating," Energy, Elsevier, vol. 147(C), pages 701-714.
- Yang, Yan & Karvounis, Nikolas & Walther, Jens Honore & Ding, Hongbing & Wen, Chuang, 2021. "Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations," Energy, Elsevier, vol. 237(C).
- Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
- Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
- Sharifi, Navid & Boroomand, Masoud & Kouhikamali, Ramin, 2012. "Wet steam flow energy analysis within thermo-compressors," Energy, Elsevier, vol. 47(1), pages 609-619.
- Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ansari, Mehran & Esfahanian, Vahid & Izadi, Mohammad Javad & Bashi, Hosein & Tavakoli, Alireza & Kordi, Mohammad, 2023. "Implementation of hot steam injection in steam turbine design: A novel mean-line method coupled with multi-objective optimization and neural network," Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ansari, Mehran & Esfahanian, Vahid & Izadi, Mohammad Javad & Bashi, Hosein & Tavakoli, Alireza & Kordi, Mohammad, 2023. "Implementation of hot steam injection in steam turbine design: A novel mean-line method coupled with multi-objective optimization and neural network," Energy, Elsevier, vol. 283(C).
- Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
- Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
- Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
- Zhang, Guojie & Wang, Xiaogang & Wiśniewski, Piotr & Chen, Jiaheng & Qin, Xiang & Dykas, Sławomir, 2023. "Effect of NaCl presence caused by salting out on the heterogeneous-homogeneous coupling non-equilibrium condensation flow in a steam turbine cascade," Energy, Elsevier, vol. 263(PE).
- Dolatabadi, Amir Momeni & Lakzian, Esmail & Heydari, Mahdi & Khan, Afrasyab, 2022. "A modified model of the suction technique of wetness reducing in wet steam flow considering power-saving," Energy, Elsevier, vol. 238(PA).
- Zhang, Guojie & Wang, Xiaogang & Jin, Zunlong & Dykas, Sławomir & Smołka, Krystian, 2023. "Numerical study of the loss and power prediction based on a modified non-equilibrium condensation model in a 200 MW industrial-scale steam turbine under different operation conditions," Energy, Elsevier, vol. 275(C).
- Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
- Zhonghe Han & Wei Zeng & Xu Han & Peng Xiang, 2018. "Investigating the Dehumidification Characteristics of Turbine Stator Cascades with Parallel Channels," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Majkut, Mirosław & Smołka, Krystian & Dykas, Sławomir, 2023. "Effect of relative humidity on the nozzle performance in non-equilibrium condensing flows for improving the compressed air energy storage technology," Energy, Elsevier, vol. 280(C).
- Han, Xu & Zeng, Wei & Han, Zhonghe, 2019. "Investigation of the comprehensive performance of turbine stator cascades with heating endwall fences," Energy, Elsevier, vol. 174(C), pages 1188-1199.
- Wang, Xiaodong & Dong, Jingliang & Li, Ao & Lei, Hongjian & Tu, Jiyuan, 2014. "Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance," Energy, Elsevier, vol. 78(C), pages 205-211.
- Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
- Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
- Wang, Zhiduo & Feng, Zhenping & Zhang, Xiaobo & Peng, Jingbo & Zhang, Fei & Wu, Xing, 2022. "Improving cooling performance and robustness of NGV endwall film cooling design using micro-scale ribs considering incidence effects," Energy, Elsevier, vol. 253(C).
- Zhang, Guojie & Wang, Xiaogang & Chen, Jiaheng & Tang, Songzhen & Smołka, Krystian & Majkut, Mirosław & Jin, Zunlong & Dykas, Sławomir, 2023. "Supersonic nozzle performance prediction considering the homogeneous-heterogeneous coupling spontaneous non-equilibrium condensation," Energy, Elsevier, vol. 284(C).
- Hu, Pengfei & Liang, Qi & Fan, Tiantian & Wang, Yanhong & Li, Qi, 2024. "Investigation of heterogeneous condensation flow characteristics in the steam turbine based on homogeneous-heterogeneous condensation coupling model using OpenFOAM," Energy, Elsevier, vol. 296(C).
- Yiqiao Li & Shengqiang Shen & Chao Niu & Yali Guo & Liuyang Zhang, 2022. "The Effect of Different Pressure Conditions on Shock Waves in a Supersonic Steam Ejector," Energies, MDPI, vol. 15(8), pages 1-15, April.
- Khafaji, H.K. & Shahsavand, A. & Shooshtari, S. H. Rajaee, 2024. "Simultaneous optimization of crude oil refinery vacuum distillation column and corresponding ejector system," Energy, Elsevier, vol. 294(C).
- Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
More about this item
Keywords
Non-equilibrium condensation; Modified model; Nano-droplets injection; Condensing losses; Efficient energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s036054422103200x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.