IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p67-d300742.html
   My bibliography  Save this article

Stochastic Mixed-Integer Programming (SMIP)-Based Distributed Energy Resource Allocation Method for Virtual Power Plants

Author

Listed:
  • Rakkyung Ko

    (The School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Sung-Kwan Joo

    (The School of Electrical Engineering, Korea University, Seoul 02841, Korea)

Abstract

Virtual power plants (VPPs) have been widely researched to handle the unpredictability and variable nature of renewable energy sources. The distributed energy resources are aggregated to form into a virtual power plant and operate as a single generator from the perspective of a system operator. Power system operators often utilize the incentives to operate virtual power plants in desired ways. To maximize the revenue of virtual power plant operators, including its incentives, an optimal portfolio needs to be identified, because each renewable energy source has a different generation pattern. This study proposes a stochastic mixed-integer programming based distributed energy resource allocation method. The proposed method attempts to maximize the revenue of VPP operators considering market incentives. Furthermore, the uncertainty in the generation pattern of renewable energy sources is considered by the stochastic approach. Numerical results show the effectiveness of the proposed method.

Suggested Citation

  • Rakkyung Ko & Sung-Kwan Joo, 2019. "Stochastic Mixed-Integer Programming (SMIP)-Based Distributed Energy Resource Allocation Method for Virtual Power Plants," Energies, MDPI, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:67-:d:300742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rakkyung Ko & Daeyoung Kang & Sung-Kwan Joo, 2019. "Mixed Integer Quadratic Programming Based Scheduling Methods for Day-Ahead Bidding and Intra-Day Operation of Virtual Power Plant," Energies, MDPI, vol. 12(8), pages 1-16, April.
    2. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
    3. Armendáriz, M. & Heleno, M. & Cardoso, G. & Mashayekh, S. & Stadler, M. & Nordström, L., 2017. "Coordinated microgrid investment and planning process considering the system operator," Applied Energy, Elsevier, vol. 200(C), pages 132-140.
    4. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    5. Jaeyong Chae & Sung-Kwan Joo, 2017. "Demand Response Resource Allocation Method Using Mean-Variance Portfolio Theory for Load Aggregators in the Korean Demand Response Market," Energies, MDPI, vol. 10(7), pages 1-14, June.
    6. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    2. Azimian, Mahdi & Amir, Vahid & Mohseni, Soheil & Brent, Alan C. & Bazmohammadi, Najmeh & Guerrero, Josep M., 2022. "Optimal Investment Planning of Bankable Multi-Carrier Microgrid Networks," Applied Energy, Elsevier, vol. 328(C).
    3. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    4. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    5. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    6. Amir, Vahid & Azimian, Mahdi, 2020. "Dynamic Multi-Carrier Microgrid Deployment Under Uncertainty," Applied Energy, Elsevier, vol. 260(C).
    7. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
    8. Iria, José & Heleno, Miguel & Cardoso, Gonçalo, 2019. "Optimal sizing and placement of energy storage systems and on-load tap changer transformers in distribution networks," Applied Energy, Elsevier, vol. 250(C), pages 1147-1157.
    9. Yang, Yanhong & Pei, Wei & Huo, Qunhai & Sun, Jianjun & Xu, Feng, 2018. "Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection," Applied Energy, Elsevier, vol. 228(C), pages 2361-2374.
    10. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    11. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    12. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    13. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    14. Muhammed Shahid & Rizwan Aslam Butt & Attaullah Khawaja, 2022. "Fiscal- and Space-Constrained Energy Optimization Model for Hybrid Grid-Tied Solar Nanogrids," Energies, MDPI, vol. 15(21), pages 1-15, October.
    15. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).
    16. DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
    17. Qiu, Jing & Zhao, Junhua & Yang, Hongming & Wang, Dongxiao & Dong, Zhao Yang, 2018. "Planning of solar photovoltaics, battery energy storage system and gas micro turbine for coupled micro energy grids," Applied Energy, Elsevier, vol. 219(C), pages 361-369.
    18. Amigo, Pía & Cea-Echenique, Sebastián & Feijoo, Felipe, 2021. "A two stage cap-and-trade model with allowance re-trading and capacity investment: The case of the Chilean NDC targets," Energy, Elsevier, vol. 224(C).
    19. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    20. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:67-:d:300742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.