IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v200y2017icp132-140.html
   My bibliography  Save this article

Coordinated microgrid investment and planning process considering the system operator

Author

Listed:
  • Armendáriz, M.
  • Heleno, M.
  • Cardoso, G.
  • Mashayekh, S.
  • Stadler, M.
  • Nordström, L.

Abstract

Nowadays, a significant number of distribution systems are facing problems to accommodate more photovoltaic (PV) capacity, namely due to the overvoltages during the daylight periods. This has an impact on the private investments in distributed energy resources (DER), since it occurs exactly when the PV prices are becoming attractive, and the opportunity to an energy transition based on solar technologies is being wasted. In particular, this limitation of the networks is a barrier for larger consumers, such as commercial and public buildings, aiming at investing in PV capacity and start operating as microgrids connected to the MV network. To address this challenge, this paper presents a coordinated approach to the microgrid investment and planning problem, where the system operator and the microgrid owner collaborate to improve the voltage control capabilities of the distribution network, increasing the PV potential. The results prove that this collaboration has the benefit of increasing the value of the microgrid investments while improving the quality of service of the system and it should be considered in the future regulatory framework.

Suggested Citation

  • Armendáriz, M. & Heleno, M. & Cardoso, G. & Mashayekh, S. & Stadler, M. & Nordström, L., 2017. "Coordinated microgrid investment and planning process considering the system operator," Applied Energy, Elsevier, vol. 200(C), pages 132-140.
  • Handle: RePEc:eee:appene:v:200:y:2017:i:c:p:132-140
    DOI: 10.1016/j.apenergy.2017.05.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730569X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yanhong & Pei, Wei & Huo, Qunhai & Sun, Jianjun & Xu, Feng, 2018. "Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection," Applied Energy, Elsevier, vol. 228(C), pages 2361-2374.
    2. Burillo, Daniel & Chester, Mikhail V. & Ruddell, Benjamin & Johnson, Nathan, 2017. "Electricity demand planning forecasts should consider climate non-stationarity to maintain reserve margins during heat waves," Applied Energy, Elsevier, vol. 206(C), pages 267-277.
    3. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    4. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    5. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    6. Mohammadhafez Bazrafshan & Likhitha Yalamanchili & Nikolaos Gatsis & Juan Gomez, 2019. "Stochastic Planning of Distributed PV Generation," Energies, MDPI, vol. 12(3), pages 1-20, January.
    7. Martín, Mariano & Grossmann, Ignacio E., 2018. "Optimal integration of renewable based processes for fuels and power production: Spain case study," Applied Energy, Elsevier, vol. 213(C), pages 595-610.
    8. Zhu, Dafeng & Yang, Bo & Liu, Qi & Ma, Kai & Zhu, Shanying & Ma, Chengbin & Guan, Xinping, 2020. "Energy trading in microgrids for synergies among electricity, hydrogen and heat networks," Applied Energy, Elsevier, vol. 272(C).
    9. Lu, Tianguang & Ai, Qian & Wang, Zhaoyu, 2018. "Interactive game vector: A stochastic operation-based pricing mechanism for smart energy systems with coupled-microgrids," Applied Energy, Elsevier, vol. 212(C), pages 1462-1475.
    10. Saumweber, Andrea & Wederhake, Lars & Cardoso, Gonçalo & Fridgen, Gilbert & Heleno, Miguel, 2021. "Designing Pareto optimal electricity retail rates when utility customers are prosumers," Energy Policy, Elsevier, vol. 156(C).
    11. Iria, José & Heleno, Miguel & Cardoso, Gonçalo, 2019. "Optimal sizing and placement of energy storage systems and on-load tap changer transformers in distribution networks," Applied Energy, Elsevier, vol. 250(C), pages 1147-1157.
    12. Rakkyung Ko & Sung-Kwan Joo, 2019. "Stochastic Mixed-Integer Programming (SMIP)-Based Distributed Energy Resource Allocation Method for Virtual Power Plants," Energies, MDPI, vol. 13(1), pages 1-10, December.
    13. Fernando Postigo Marcos & Carlos Mateo Domingo & Tomás Gómez San Román & Rafael Cossent Arín, 2020. "Location and Sizing of Micro-Grids to Improve Continuity of Supply in Radial Distribution Networks," Energies, MDPI, vol. 13(13), pages 1-21, July.
    14. Liu, Youbo & Zuo, Kunyu & Liu, Xueqin (Amy) & Liu, Junyong & Kennedy, Jason M., 2018. "Dynamic pricing for decentralized energy trading in micro-grids," Applied Energy, Elsevier, vol. 228(C), pages 689-699.
    15. Guo, Li & Hou, Ruosong & Liu, Yixin & Wang, Chengshan & Lu, Hai, 2020. "A novel typical day selection method for the robust planning of stand-alone wind-photovoltaic-diesel-battery microgrid," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:200:y:2017:i:c:p:132-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.