Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118148
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2011. "Modeling and optimization of a utility system containing multiple extractions steam turbines," Energy, Elsevier, vol. 36(5), pages 3501-3512.
- Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
- A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
- Zhao, Liang & You, Fengqi, 2019. "A data-driven approach for industrial utility systems optimization under uncertainty," Energy, Elsevier, vol. 182(C), pages 559-569.
- Kueppers, Martin & Paredes Pineda, Stephany Nicole & Metzger, Michael & Huber, Matthias & Paulus, Simon & Heger, Hans Joerg & Niessen, Stefan, 2021. "Decarbonization pathways of worldwide energy systems – Definition and modeling of archetypes," Applied Energy, Elsevier, vol. 285(C).
- Shabazbegian, Vahid & Ameli, Hossein & Ameli, Mohammad Taghi & Strbac, Goran & Qadrdan, Meysam, 2021. "Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach," Applied Energy, Elsevier, vol. 284(C).
- Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
- Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
- Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Dynamic modeling and operation optimization for the cold end system of thermal power plants during transient processes," Energy, Elsevier, vol. 145(C), pages 734-746.
- Wang, Wei & Zeng, Deliang & Liu, Jizhen & Niu, Yuguang & Cui, Can, 2014. "Feasibility analysis of changing turbine load in power plants using continuous condenser pressure adjustment," Energy, Elsevier, vol. 64(C), pages 533-540.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Qipeng & Zhao, Liang, 2023. "Data-driven stochastic robust optimization of sustainable utility system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Jia, Ruru & Gao, Jinwu & Gao, Feng, 2022. "Robust ocean zoning for conservation, fishery and marine renewable energy with co-location strategy," Applied Energy, Elsevier, vol. 328(C).
- Gong, Shixin, 2023. "Multi-scale energy efficiency recognition and diagnosis scheme for ethylene production based on a hierarchical multi-indicator system," Energy, Elsevier, vol. 267(C).
- Han, Yulin & Zheng, Jingyuan & Luo, Xiaoyan & Qian, Yu & Yang, Siyu, 2023. "Multi-scenario data-driven robust optimisation for industrial steam power systems under uncertainty," Energy, Elsevier, vol. 263(PD).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Qipeng & Zhao, Liang, 2023. "Data-driven stochastic robust optimization of sustainable utility system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Ghaemi, Zahra & Tran, Thomas T.D. & Smith, Amanda D., 2022. "Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties," Applied Energy, Elsevier, vol. 321(C).
- Han, Biao & Shang, Chao & Huang, Dexian, 2021. "Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1004-1018.
- Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
- Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
- L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
- Weiwei Chen & Yibo Wang & Jia Zhang & Wei Dou & Yaxuan Jiao, 2022. "Planning and Energy–Economy–Environment–Security Evaluation Methods for Municipal Energy Systems in China under Targets of Peak Carbon Emissions and Carbon Neutrality," Energies, MDPI, vol. 15(19), pages 1-20, October.
- Nge, Chee Lim & Ranaweera, Iromi U. & Midtgård, Ole-Morten & Norum, Lars, 2019. "A real-time energy management system for smart grid integrated photovoltaic generation with battery storage," Renewable Energy, Elsevier, vol. 130(C), pages 774-785.
- Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Bren, Austin & Saghafian, Soroush, 2018. "Data-Driven Percentile Optimization for Multi-Class Queueing Systems with Model Ambiguity: Theory and Application," Working Paper Series rwp18-008, Harvard University, John F. Kennedy School of Government.
- Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
- Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
- Yanyan Wang & Baiqing Sun, 2022. "Multiperiod optimal emergency material allocation considering road network damage and risk under uncertain conditions," Operational Research, Springer, vol. 22(3), pages 2173-2208, July.
- Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
- Hu, Yuting & Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2022. "Computationally efficient train timetable generation of metro networks with uncertain transfer walking time to reduce passenger waiting time: A generalized Benders decomposition-based method," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 210-231.
- Han, Yulin & Zheng, Jingyuan & Luo, Xiaoyan & Qian, Yu & Yang, Siyu, 2023. "Multi-scenario data-driven robust optimisation for industrial steam power systems under uncertainty," Energy, Elsevier, vol. 263(PD).
- de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
- Aouam, Tarik & Brahimi, Nadjib, 2013. "Integrated production planning and order acceptance under uncertainty: A robust optimization approach," European Journal of Operational Research, Elsevier, vol. 228(3), pages 504-515.
- Gülşen, Ece & Olivetti, Elsa & Freire, Fausto & Dias, Luis & Kirchain, Randolph, 2014. "Impact of feedstock diversification on the cost-effectiveness of biodiesel," Applied Energy, Elsevier, vol. 126(C), pages 281-296.
- Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
More about this item
Keywords
Energy systems; Industrial big data; Machine learning; Uncertainty; Adaptive robust optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014239. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.