IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1410-d222216.html
   My bibliography  Save this article

Mixed Integer Quadratic Programming Based Scheduling Methods for Day-Ahead Bidding and Intra-Day Operation of Virtual Power Plant

Author

Listed:
  • Rakkyung Ko

    (The School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Daeyoung Kang

    (The School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Sung-Kwan Joo

    (The School of Electrical Engineering, Korea University, Seoul 02841, Korea)

Abstract

As distributed energy resources (DERs) proliferate power systems, power grids face new challenges stemming from the variability and uncertainty of DERs. To address these problems, virtual power plants (VPPs) are established to aggregate DERs and manage them as single dispatchable and reliable resources. VPPs can participate in the day-ahead (DA) market and therefore require a bidding method that maximizes profits. It is also important to minimize the variability of VPP output during intra-day (ID) operations. This paper presents mixed integer quadratic programming-based scheduling methods for both DA market bidding and ID operation of VPPs, thus serving as a complete scheme for bidding-operation scheduling. Hourly bids are determined based on VPP revenue in the DA market bidding step, and the schedule of DERs is revised in the ID operation to minimize the impact of forecasting errors and maximize the incentives, thus reducing the variability and uncertainty of VPP output. The simulation results verify the effectiveness of the proposed methods through a comparison of daily revenue.

Suggested Citation

  • Rakkyung Ko & Daeyoung Kang & Sung-Kwan Joo, 2019. "Mixed Integer Quadratic Programming Based Scheduling Methods for Day-Ahead Bidding and Intra-Day Operation of Virtual Power Plant," Energies, MDPI, vol. 12(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1410-:d:222216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Ershadul Karim & Abu Bakar Munir & Mohammad Ataul Karim & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nazmi Sellami & Nurul Aini Bani & Mohamad Zaki Hassan, 2018. "Energy Revolution for Our Common Future: An Evaluation of the Emerging International Renewable Energy Law," Energies, MDPI, vol. 11(7), pages 1-20, July.
    2. Yong-Gi Park & Jong-Bae Park & Namsu Kim & Kwang Y. Lee, 2017. "Linear Formulation for Short-Term Operational Scheduling of Energy Storage Systems in Power Grids," Energies, MDPI, vol. 10(2), pages 1-16, February.
    3. Haiteng Han & Hantao Cui & Shan Gao & Qingxin Shi & Anjie Fan & Chen Wu, 2018. "A Remedial Strategic Scheduling Model for Load Serving Entities Considering the Interaction between Grid-Level Energy Storage and Virtual Power Plants," Energies, MDPI, vol. 11(9), pages 1-19, September.
    4. Mazzeo, Domenico & Oliveti, Giuseppe & Baglivo, Cristina & Congedo, Paolo M., 2018. "Energy reliability-constrained method for the multi-objective optimization of a photovoltaic-wind hybrid system with battery storage," Energy, Elsevier, vol. 156(C), pages 688-708.
    5. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Gao & Hongxia Guo & Ruihong Zhang & Tian Mao & Qianyao Xu & Baorong Zhou & Ping Yang, 2019. "A Two-Stage Dispatch Mechanism for Virtual Power Plant Utilizing the CVaR Theory in the Electricity Spot Market," Energies, MDPI, vol. 12(17), pages 1-18, September.
    2. Yuqing Wang & Min Zhang & Jindi Ao & Zhaozhen Wang & Houqi Dong & Ming Zeng, 2022. "Profit Allocation Strategy of Virtual Power Plant Based on Multi-Objective Optimization in Electricity Market," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    3. Rakkyung Ko & Sung-Kwan Joo, 2019. "Stochastic Mixed-Integer Programming (SMIP)-Based Distributed Energy Resource Allocation Method for Virtual Power Plants," Energies, MDPI, vol. 13(1), pages 1-10, December.
    4. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    5. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liwei Ju & Peng Li & Qinliang Tan & Zhongfu Tan & GejiriFu De, 2018. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses," Energies, MDPI, vol. 11(11), pages 1-28, October.
    2. Haiteng Han & Hantao Cui & Shan Gao & Qingxin Shi & Anjie Fan & Chen Wu, 2018. "A Remedial Strategic Scheduling Model for Load Serving Entities Considering the Interaction between Grid-Level Energy Storage and Virtual Power Plants," Energies, MDPI, vol. 11(9), pages 1-19, September.
    3. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    4. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    5. Md. Arif Hossain & Ashik Ahmed & Shafiqur Rahman Tito & Razzaqul Ahshan & Taiyeb Hasan Sakib & Sarvar Hussain Nengroo, 2022. "Multi-Objective Hybrid Optimization for Optimal Sizing of a Hybrid Renewable Power System for Home Applications," Energies, MDPI, vol. 16(1), pages 1-19, December.
    6. Paolo Maria Congedo & Cristina Baglivo & Simone Panico & Domenico Mazzeo & Nicoletta Matera, 2022. "Optimization of Micro-CAES and TES Systems for Trigeneration," Energies, MDPI, vol. 15(17), pages 1-14, August.
    7. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
    8. Mohammad Ershadul Karim & Ridoan Karim & Md. Toriqul Islam & Firdaus Muhammad-Sukki & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2019. "Renewable Energy for Sustainable Growth and Development: An Evaluation of Law and Policy of Bangladesh," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    9. Nasiri, Nima & Mansour Saatloo, Amin & Mirzaei, Mohammad Amin & Ravadanegh, Sajad Najafi & Zare, Kazem & Mohammadi-ivatloo, Behnam & Marzband, Mousa, 2023. "A robust bi-level optimization framework for participation of multi-energy service providers in integrated power and natural gas markets," Applied Energy, Elsevier, vol. 340(C).
    10. Yu, Min Gyung & Pavlak, Gregory S., 2022. "Extracting interpretable building control rules from multi-objective model predictive control data sets," Energy, Elsevier, vol. 240(C).
    11. Dongdong Song & Yuewen Liu & Tianbao Qin & Hongsong Gu & Yang Cao & Hongjun Shi, 2022. "Overview of the Policy Instruments for Renewable Energy Development in China," Energies, MDPI, vol. 15(18), pages 1-14, September.
    12. Jing Wang & Kaitlyn Garifi & Kyri Baker & Wangda Zuo & Yingchen Zhang & Sen Huang & Draguna Vrabie, 2020. "Optimal Renewable Resource Allocation and Load Scheduling of Resilient Communities," Energies, MDPI, vol. 13(21), pages 1-29, October.
    13. Eslami, M. & Nahani, P., 2021. "How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization," Utilities Policy, Elsevier, vol. 72(C).
    14. Kumar Shivam & Jong-Chyuan Tzou & Shang-Chen Wu, 2020. "Multi-Objective Sizing Optimization of a Grid-Connected Solar–Wind Hybrid System Using Climate Classification: A Case Study of Four Locations in Southern Taiwan," Energies, MDPI, vol. 13(10), pages 1-30, May.
    15. Wei-Tzer Huang & Kai-Chao Yao & Ming-Ku Chen & Feng-Ying Wang & Cang-Hui Zhu & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2018. "Derivation and Application of a New Transmission Loss Formula for Power System Economic Dispatch," Energies, MDPI, vol. 11(2), pages 1-19, February.
    16. Mazzeo, Domenico, 2019. "Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis," Energy, Elsevier, vol. 168(C), pages 310-331.
    17. Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
    18. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    19. Panda, Ambarish & Mishra, Umakanta & Aviso, Kathleen B., 2020. "Optimizing hybrid power systems with compressed air energy storage," Energy, Elsevier, vol. 205(C).
    20. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2021. "Optimal energy management of a PV-WTG-BSS-DG microgrid system," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1410-:d:222216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.