IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10173-d1526014.html
   My bibliography  Save this article

Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach

Author

Listed:
  • Yannay Casas-Ledón

    (Environmental Engineering Department, Faculty of Environmental Sciences-EULA Center, University of Concepción, Victor Lamas 1290, Casilla 160-C, Concepción 4070386, Chile
    Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap, Victoria 1295, Concepción 4070411, Chile)

  • Javiera Silva

    (Environmental Engineering Department, Faculty of Environmental Sciences-EULA Center, University of Concepción, Victor Lamas 1290, Casilla 160-C, Concepción 4070386, Chile)

  • Sebastián Larrere

    (Environmental Engineering Department, Faculty of Environmental Sciences-EULA Center, University of Concepción, Victor Lamas 1290, Casilla 160-C, Concepción 4070386, Chile)

  • Yenisleidy Martínez-Martínez

    (Environmental Engineering Department, Faculty of Environmental Sciences-EULA Center, University of Concepción, Victor Lamas 1290, Casilla 160-C, Concepción 4070386, Chile)

Abstract

Land management is critical for the conservation of natural resources, particularly in agroforestry systems which rely heavily on land productivity and availability. Optimizing land utilization is critical for sustainable biomass production and is a key component of achieving effective, long-term sustainable land management. This study assesses the resource efficiency of agroforestry production systems with a novel exergy-based indicator (ΔEF). The indicator was used in the Biobío and Ñuble regions to assess the resource balance between six agricultural and two forestry production systems. The ΔEF values ranged from positive to negative, with positive values indicating better resource usage and negative values suggesting the opposite. Eucalyptus globulus had higher ΔEF values (18.06–19.5 MJex/m 2 .yr) than Pinus radiata (−2.71 to −1.47 MJex/m 2 .yr), indicating better sustainability due to its high biomass yields and lower harvesting period and resource consumption. Sugar beet, wheat, and potatoes were the most sustainable (8.57–154.6 MJex/m 2 .yr) because of their high yields and less intensive harvesting methods. Disparities in biomass yield, potential net primary production (NPP pot ), and land management intensity drive differences in ΔEF across regions. Our findings enhance the understanding of local and non-local resource efficiency in agroforestry systems, revealing significant drivers to encourage more sustainable land management practices.

Suggested Citation

  • Yannay Casas-Ledón & Javiera Silva & Sebastián Larrere & Yenisleidy Martínez-Martínez, 2024. "Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach," Sustainability, MDPI, vol. 16(23), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10173-:d:1526014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Díaz, María Elisa & Figueroa, Ricardo & Alonso, M. Luisa Suárez & Vidal-Abarca, M. Rosario, 2018. "Exploring the complex relations between water resources and social indicators: The Biobío Basin (Chile)," Ecosystem Services, Elsevier, vol. 31(PA), pages 84-92.
    2. Ke, Xinli & Chen, Jing & Zuo, Chengchao & Wang, Xiaoqian, 2024. "The cropland intensive utilisation transition in China: An induced factor substitution perspective," Land Use Policy, Elsevier, vol. 141(C).
    3. Sutton, Paul C. & Anderson, Sharolyn J. & Costanza, Robert & Kubiszewski, Ida, 2016. "The ecological economics of land degradation: Impacts on ecosystem service values," Ecological Economics, Elsevier, vol. 129(C), pages 182-192.
    4. Casas-Ledón, Yannay & Flores, Mauricio & Jiménez, Romel & Ronsse, Frederik & Dewulf, Jo & Arteaga-Pérez, Luis E., 2019. "On the environmental and economic issues associated with the forestry residues-to-heat and electricity route in Chile: Sawdust gasification as a case study," Energy, Elsevier, vol. 170(C), pages 763-776.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanesa Rodríguez-Merchan & Claudia Ulloa-Tesser & Yannay Casas-Ledón, 2019. "Evaluation of the Water–Energy–Land Nexus (WELN) Using Exergy-Based Indicators: The Chilean Electricity System Case," Energies, MDPI, vol. 13(1), pages 1-20, December.
    2. Liao, Chuan & Jung, Suhyun & Brown, Daniel G. & Agrawal, Arun, 2024. "Does land tenure change accelerate deforestation? A matching-based four-country comparison," Ecological Economics, Elsevier, vol. 215(C).
    3. Merica Slišković & Katja Božić & Jelena Žanić Mikuličić & Ines Kolanović, 2024. "Addressing the Significance of the Union List with a Focus on Marine Invasive Alien Species Impacts," Sustainability, MDPI, vol. 16(21), pages 1-25, October.
    4. Lingge Zhang & Ningke Hu, 2021. "Spatial Variation and Terrain Gradient Effect of Ecosystem Services in Heihe River Basin over the Past 20 Years," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    5. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    6. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    7. Ling Cheng & Haiyang Cui & Tian Liang & Dan Huang & Yuanxia Su & Zhiyong Zhang & Chuanhao Wen, 2023. "Study on the Trade-Off Synergy Relationship of “Production-Living-Ecological” Functions in Chinese Counties: A Case Study of Chongqing Municipality," Land, MDPI, vol. 12(5), pages 1-27, May.
    8. Mohamed A. M. Abd Elbasit & Jasper Knight & Gang Liu & Majed M. Abu-Zreig & Rashid Hasaan, 2021. "Valuation of Ecosystem Services in South Africa, 2001–2019," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    9. Zhang, Yanjie & Pan, Ying & Li, Meng & Wang, Zhipeng & Wu, Junxi & Zhang, Xianzhou & Cao, Yanan, 2021. "Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet," Ecosystem Services, Elsevier, vol. 47(C).
    10. Fangfang Xun & Yecui Hu & Ling Lv & Jinhui Tong, 2017. "Farmers’ Awareness of Ecosystem Services and the Associated Policy Implications," Sustainability, MDPI, vol. 9(9), pages 1-13, September.
    11. Jiayi Zhou & Kangning Xiong & Qi Wang & Jiuhan Tang & Li Lin, 2022. "A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    12. Kangkang Gu & Luyao Ma & Jian Xu & Haoran Yu & Xinmu Zhang, 2023. "Spatiotemporal Evolution Characteristics and Driving Factors of Water Conservation Service in Jiangxi Province from 2001 to 2020," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    13. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    14. Tian Dong & Weihua Xu & Hua Zheng & Yang Xiao & Lingqiao Kong & Zhiyun Ouyang, 2018. "A Framework for Regional Ecological Risk Warning Based on Ecosystem Service Approach: A Case Study in Ganzi, China," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    15. Omid Bozorg-Haddad & Mohammad Delpasand & Sarvin ZamanZad-Ghavidel & Xuefeng Chu, 2024. "Developing a novel social–water capital index by gene expression programming," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28187-28217, November.
    16. Muluberhan Biedemariam & Emiru Birhane & Biadgilgn Demissie & Tewodros Tadesse & Girmay Gebresamuel & Solomon Habtu, 2022. "Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review," Land, MDPI, vol. 11(12), pages 1-21, December.
    17. Kubiszewski, Ida & Jarvis, Diane & Zakariyya, Nabeeh, 2019. "Spatial variations in contributors to life satisfaction: An Australian case study," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    18. Ingrid Vigna & Angelo Besana & Elena Comino & Alessandro Pezzoli, 2021. "Application of the Socio-Ecological System Framework to Forest Fire Risk Management: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    19. Rares Halbac-Cotoara-Zamfir & Daniela Smiraglia & Giovanni Quaranta & Rosanna Salvia & Luca Salvati & Antonio Giménez-Morera, 2020. "Land Degradation and Mitigation Policies in the Mediterranean Region: A Brief Commentary," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    20. Henghui Xi & Wanglai Cui & Li Cai & Mengyuan Chen & Chenglei Xu, 2021. "Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands Based on LUCC," Sustainability, MDPI, vol. 13(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10173-:d:1526014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.