IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1570-d225842.html
   My bibliography  Save this article

Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium

Author

Listed:
  • Chung-Yiin Wong

    (Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
    Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Siti-Suhailah Rosli

    (Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
    Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Yoshimitsu Uemura

    (Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Yeek Chia Ho

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Arunsri Leejeerajumnean

    (Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand)

  • Worapon Kiatkittipong

    (Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand)

  • Chin-Kui Cheng

    (Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Pahang, Malaysia)

  • Man-Kee Lam

    (Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Jun-Wei Lim

    (Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
    Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

Abstract

Primarily produced via transesterification of lipid sources, fatty acid methyl ester (FAME) of biodiesel derived from insect larvae has gained momentum in a great deal of research done over other types of feedstock. From the self-harvesting nature of black soldier fly larvae (BSFL), research had, however, only concentrated on the harvest of BSFL on sixth instar. Through rearing BSFL on coconut endosperm waste (CEW), 100 BSFL were harvested at the fifth and sixth instar, then modification on CEW with mixed-bacteria powder was carried out. It was found that the fifth instar BSFL had 34% lipid content, which was 8% more than the sixth instar. Both instars had similar corrected protein contents around 35–38%. The sixth instar BSFL contained around 19% of chitin, which was about 11% more than the fifth instar. Biodiesel products from both instars showed no differences in terms of FAME content. With modification on CEW, at 0.5 wt% of mixed-bacteria powder concentration, the maximum waste-to-biomass conversion (WBC) and protein conversion (PC) were achieved at 9% and 60%, respectively. Moreover, even with the shorter fermentation time frame of CEW, it did not affect the development of BSFL in terms of its WBC and PC when fed with 14 and 21 days fermented medium. FAME from all groups set, which predominantly constituted about C12:0 at around 60%, followed by C14:0 at around 15%, C16:0, and C18:1 both at 10% on average. Lastly, the FAME yield from BSFL was improved from 25% (sixth instar) to 33% (fifth instar) and showed its highest at 38.5% with modification on raw CEW with 0.5 wt% mixed-bacteria powder and fermented for 21 days. Thus, harvesting BSFL at earlier instar is more beneficial and practical, as it improves the FAME yield from the BSFL biomass.

Suggested Citation

  • Chung-Yiin Wong & Siti-Suhailah Rosli & Yoshimitsu Uemura & Yeek Chia Ho & Arunsri Leejeerajumnean & Worapon Kiatkittipong & Chin-Kui Cheng & Man-Kee Lam & Jun-Wei Lim, 2019. "Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium," Energies, MDPI, vol. 12(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1570-:d:225842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Sen & Liu, Ziduo, 2014. "Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production," Applied Energy, Elsevier, vol. 113(C), pages 385-391.
    2. Lam, Man Kee & Yusoff, Mohammad Iqram & Uemura, Yoshimitsu & Lim, Jun Wei & Khoo, Choon Gek & Lee, Keat Teong & Ong, Hwai Chyuan, 2017. "Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies," Renewable Energy, Elsevier, vol. 103(C), pages 197-207.
    3. Zheng, Longyu & Li, Qing & Zhang, Jibin & Yu, Ziniu, 2012. "Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production," Renewable Energy, Elsevier, vol. 41(C), pages 75-79.
    4. Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2013. "Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock," Applied Energy, Elsevier, vol. 101(C), pages 618-621.
    5. Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2012. "Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes," Energy, Elsevier, vol. 47(1), pages 225-229.
    6. Mohd-Noor, Siti-Nuraini & Wong, Chung-Yiin & Lim, Jun-Wei & Mah-Hussin, Mah-Iazam-Azuri & Uemura, Yoshimitsu & Lam, Man-Kee & Ramli, Anita & Bashir, Mohammed J.K. & Tham, Leony, 2017. "Optimization of self-fermented period of waste coconut endosperm destined to feed black soldier fly larvae in enhancing the lipid and protein yields," Renewable Energy, Elsevier, vol. 111(C), pages 646-654.
    7. Yang, Sen & Li, Qing & Gao, Yang & Zheng, Longyu & Liu, Ziduo, 2014. "Biodiesel production from swine manure via housefly larvae (Musca domestica L.)," Renewable Energy, Elsevier, vol. 66(C), pages 222-227.
    8. Surendra, K.C. & Olivier, Robert & Tomberlin, Jeffery K. & Jha, Rajesh & Khanal, Samir Kumar, 2016. "Bioconversion of organic wastes into biodiesel and animal feed via insect farming," Renewable Energy, Elsevier, vol. 98(C), pages 197-202.
    9. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Xia, Ao & Murphy, Jerry D., 2015. "What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?," Energy, Elsevier, vol. 81(C), pages 352-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dave Mangindaan & Emil Robert Kaburuan & Bayu Meindrawan, 2022. "Black Soldier Fly Larvae ( Hermetia illucens ) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    2. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    3. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    4. Tuti Suryati & Euis Julaeha & Kindi Farabi & Hanies Ambarsari & Ace Tatang Hidayat, 2023. "Lauric Acid from the Black Soldier Fly ( Hermetia illucens ) and Its Potential Applications," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    5. Liew, Chin Seng & Mong, Guo Ren & Lim, Jun Wei & Raksasat, Ratchaprapa & Rawindran, Hemamalini & Hassan, Muzamil A. & Lam, Man Kee & Khoo, Kuan Shiong & Zango, Zakariyya Uba, 2023. "Low-temperature thermal pre-treated sewage sludge for feeding of black soldier fly (Hermetia illucens) larvae: Protein, lipid and biodiesel profile and characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    6. Chung Yiin Wong & Muhammad Naeim Mohd Aris & Hanita Daud & Man Kee Lam & Ching Seong Yong & Hadura Abu Hasan & Siewhui Chong & Pau Loke Show & Oetami Dwi Hajoeningtijas & Yeek Chia Ho & Pei Sean Goh &, 2020. "In-Situ Yeast Fermentation to Enhance Bioconversion of Coconut Endosperm Waste into Larval Biomass of Hermetia illucens : Statistical Augmentation of Larval Lipid Content," Sustainability, MDPI, vol. 12(4), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamarulzaman, Mohd Kamal & Hafiz, M. & Abdullah, Adam & Chen, Ang Fuk & Awad, Omar I., 2019. "Combustion, performances and emissions characteristics of black soldier fly larvae oil and diesel blends in compression ignition engine," Renewable Energy, Elsevier, vol. 142(C), pages 569-580.
    2. Chung Yiin Wong & Muhammad Naeim Mohd Aris & Hanita Daud & Man Kee Lam & Ching Seong Yong & Hadura Abu Hasan & Siewhui Chong & Pau Loke Show & Oetami Dwi Hajoeningtijas & Yeek Chia Ho & Pei Sean Goh &, 2020. "In-Situ Yeast Fermentation to Enhance Bioconversion of Coconut Endosperm Waste into Larval Biomass of Hermetia illucens : Statistical Augmentation of Larval Lipid Content," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    3. Pang, Wancheng & Hou, Dejia & Ke, Jingwen & Chen, Jiangshan & Holtzapple, Mark T. & Tomberlin, Jeffery K. & Chen, Huanchun & Zhang, Jibin & Li, Qing, 2020. "Production of biodiesel from CO2 and organic wastes by fermentation and black soldier fly," Renewable Energy, Elsevier, vol. 149(C), pages 1174-1181.
    4. Elsayed, Mahdy & Li, Wu & Abdalla, Nashwa S. & Ai, Ping & Zhang, Yanlin & Abomohra, Abd El-Fatah, 2022. "Innovative approach for rapeseed straw recycling using black solider fly larvae: Towards enhanced energy recovery," Renewable Energy, Elsevier, vol. 188(C), pages 211-222.
    5. Chia-Hung Su & Hoang Chinh Nguyen & Uyen Khanh Pham & My Linh Nguyen & Horng-Yi Juan, 2018. "Biodiesel Production from a Novel Nonedible Feedstock, Soursop ( Annona muricata L.) Seed Oil," Energies, MDPI, vol. 11(10), pages 1-11, September.
    6. Antonio Franco & Carmen Scieuzo & Rosanna Salvia & Anna Maria Petrone & Elena Tafi & Antonio Moretta & Eric Schmitt & Patrizia Falabella, 2021. "Lipids from Hermetia illucens , an Innovative and Sustainable Source," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    7. Dave Mangindaan & Emil Robert Kaburuan & Bayu Meindrawan, 2022. "Black Soldier Fly Larvae ( Hermetia illucens ) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    8. Costanza Jucker & Daniela Lupi & Christopher Douglas Moore & Maria Giovanna Leonardi & Sara Savoldelli, 2020. "Nutrient Recapture from Insect Farm Waste: Bioconversion with Hermetia illucens (L.) (Diptera: Stratiomyidae)," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    9. Talal Yusaf & Mohd Kamal Kamarulzaman & Abdullah Adam & Sakinah Hisham & Devarajan Ramasamy & Kumaran Kadirgama & Mahendran Samykano & Sivaraos Subramaniam, 2022. "Physical-Chemical Properties Modification of Hermetia Illucens Larvae Oil and Diesel Fuel for the Internal Combustion Engines Application," Energies, MDPI, vol. 15(21), pages 1-17, October.
    10. Zhu, Junyu & Liu, Xiangjie & Zhang, Xin & Deng, Bo & Xu, Chao & Zhang, Congcong & Yuan, Qiaoxia, 2023. "Experimental study on black soldier fly (Hermetia illucens L.) larvae hydrothermal liquefaction in methanol-water Co-solvent: Bio-oil yields and properties," Renewable Energy, Elsevier, vol. 218(C).
    11. Tuti Suryati & Euis Julaeha & Kindi Farabi & Hanies Ambarsari & Ace Tatang Hidayat, 2023. "Lauric Acid from the Black Soldier Fly ( Hermetia illucens ) and Its Potential Applications," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    12. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    13. Wu, Sheng-qing & Cai, Zi-zhe & Niu, Yi & Zheng, Dong & He, Guo-rui & Wang, Yong & Yang, De-po, 2017. "A renewable lipid source for biolubricant feedstock oil from housefly (Musca domestica) larva," Renewable Energy, Elsevier, vol. 113(C), pages 546-553.
    14. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    15. Win, Shwe S. & Ebner, Jacqueline H. & Brownell, Sarah A. & Pagano, Susan S. & Cruz-Diloné, Pedro & Trabold, Thomas A., 2018. "Anaerobic digestion of black solider fly larvae (BSFL) biomass as part of an integrated biorefinery," Renewable Energy, Elsevier, vol. 127(C), pages 705-712.
    16. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    17. Wu, Sheng-qing & Sun, Ting-ting & Cai, Zi-zhe & Shen, Juan & Yang, Wen-zhe & Zhao, Zhi-min & Yang, De-po, 2020. "Biolubricant base stock with improved low temperature performance: Ester complex production using housefly (Musca domestica L.) larval lipid," Renewable Energy, Elsevier, vol. 162(C), pages 1940-1951.
    18. Caroline Jennings Saul & Heiko Gebauer, 2018. "Digital Transformation as an Enabler for Advanced Services in the Sanitation Sector," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    19. Eili Skrivervik, 2018. "The Bioeconomy and Food Waste: Insects’ Contribution," Working Papers on Innovation Studies 20181021, Centre for Technology, Innovation and Culture, University of Oslo.
    20. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1570-:d:225842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.