Residual-connected physics-informed neural network for anti-noise wind field reconstruction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122439
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2019. "Improving CFD wind farm simulations incorporating wind direction uncertainty," Renewable Energy, Elsevier, vol. 133(C), pages 1011-1023.
- Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
- Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
- Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
- He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
- Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
- Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
- Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
- He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
- Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Yanghe Liu & Hairong Zhang & Chuanfeng Wu & Mengxin Shao & Liting Zhou & Wenlong Fu, 2024. "A Short-Term Wind Speed Forecasting Framework Coupling a Maximum Information Coefficient, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Shared Weight Gated Memory Network with Im," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
- Bottasso, C.L. & Cacciola, S. & Schreiber, J., 2018. "Local wind speed estimation, with application to wake impingement detection," Renewable Energy, Elsevier, vol. 116(PA), pages 155-168.
- Antonini, Enrico G.A. & Caldeira, Ken, 2021. "Atmospheric pressure gradients and Coriolis forces provide geophysical limits to power density of large wind farms," Applied Energy, Elsevier, vol. 281(C).
- Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
- Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
- Su, Keye & Bliss, Donald, 2019. "A novel hybrid free-wake model for wind turbine performance and wake evolution," Renewable Energy, Elsevier, vol. 131(C), pages 977-992.
- Aju, Emmanuvel Joseph & Kumar, Devesh & Leffingwell, Melissa & Rotea, Mario A. & Jin, Yaqing, 2023. "The influence of yaw misalignment on turbine power output fluctuations and unsteady aerodynamic loads within wind farms," Renewable Energy, Elsevier, vol. 215(C).
- Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
- Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
- Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
- Anfeng Zhu & Qiancheng Zhao & Xian Wang & Ling Zhou, 2022. "Ultra-Short-Term Wind Power Combined Prediction Based on Complementary Ensemble Empirical Mode Decomposition, Whale Optimisation Algorithm, and Elman Network," Energies, MDPI, vol. 15(9), pages 1-17, April.
- Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
- Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
More about this item
Keywords
Physics-informed neural network; Residual connection; Wind field reconstruction; LIDAR measurements; Measurement noise;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.