IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1016-d214190.html
   My bibliography  Save this article

Experimental Investigation on the Performances of a Multilevel Inverter Using a Field Programmable Gate Array-Based Control System

Author

Listed:
  • Guido Ala

    (Dipartimento di Ingegneria, Università degli Studi di Palermo,Viale delle Scienze, 90128 Palermo, Italy)

  • Massimo Caruso

    (Dipartimento di Ingegneria, Università degli Studi di Palermo,Viale delle Scienze, 90128 Palermo, Italy)

  • Rosario Miceli

    (Dipartimento di Ingegneria, Università degli Studi di Palermo,Viale delle Scienze, 90128 Palermo, Italy)

  • Filippo Pellitteri

    (Dipartimento di Ingegneria, Università degli Studi di Palermo,Viale delle Scienze, 90128 Palermo, Italy)

  • Giuseppe Schettino

    (Dipartimento di Ingegneria, Università degli Studi di Palermo,Viale delle Scienze, 90128 Palermo, Italy)

  • Marco Trapanese

    (Dipartimento di Ingegneria, Università degli Studi di Palermo,Viale delle Scienze, 90128 Palermo, Italy)

  • Fabio Viola

    (Dipartimento di Ingegneria, Università degli Studi di Palermo,Viale delle Scienze, 90128 Palermo, Italy)

Abstract

The Field Programmable Gate Array (FPGA) represents a valid solution for the design of control systems for inverters adopted in many industry applications, because of both its high flexibility of use and its high-performance with respect to other types of digital controllers. In this context, this paper presents an experimental investigation on the harmonic content of the voltages produced by a three-phase, five level cascaded H-Bridge Multilevel inverter with an FPGA-based control board, aiming also to evaluate the performance of the FPGA through the implementation of the main common modulation techniques and the comparison between simulation and experimental results. The control algorithms are implemented by means of the VHDL programming language. The output voltage waveforms, which have been obtained by applying to the inverter the main PWM techniques, are compared in terms of THD%. Simulation and experimental results are analyzed, compared and finally discussed.

Suggested Citation

  • Guido Ala & Massimo Caruso & Rosario Miceli & Filippo Pellitteri & Giuseppe Schettino & Marco Trapanese & Fabio Viola, 2019. "Experimental Investigation on the Performances of a Multilevel Inverter Using a Field Programmable Gate Array-Based Control System," Energies, MDPI, vol. 12(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1016-:d:214190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meenakshi Jayaraman & Sreedevi VT, 2017. "Power Quality Improvement in a Cascaded Multilevel Inverter Interfaced Grid Connected System Using a Modified Inductive–Capacitive–Inductive Filter with Reduced Power Loss and Improved Harmonic Attenu," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Fangrong Xue & Zhi Ling & Yubing Yang & Xingpo Miao, 2017. "Design and Implementation of Novel Smart Battery Management System for FPGA Based Portable Electronic Devices," Energies, MDPI, vol. 10(3), pages 1-14, February.
    3. Fabio Viola, 2018. "Experimental Evaluation of the Performance of a Three-Phase Five-Level Cascaded H-Bridge Inverter by Means FPGA-Based Control Board for Grid Connected Applications," Energies, MDPI, vol. 11(12), pages 1-47, November.
    4. Rosario Miceli & Giuseppe Schettino & Fabio Viola, 2018. "A Novel Computational Approach for Harmonic Mitigation in PV Systems with Single-Phase Five-Level CHBMI," Energies, MDPI, vol. 11(8), pages 1-20, August.
    5. Bingda Zhang & Yang Wang & Sijia Tu & Zhao Jin, 2018. "FPGA-Based Real-Time Digital Solver for Electro-Mechanical Transient Simulation," Energies, MDPI, vol. 11(10), pages 1-19, October.
    6. Miran Rodič & Miro Milanovič & Mitja Truntič, 2018. "Digital Control of an Interleaving Operated Buck-Boost Synchronous Converter Used in a Low-Cost Testing System for an Automotive Powertrain," Energies, MDPI, vol. 11(9), pages 1-24, August.
    7. Mattia Ricco & Laszlo Mathe & Eric Monmasson & Remus Teodorescu, 2018. "FPGA-Based Implementation of MMC Control Based on Sorting Networks," Energies, MDPI, vol. 11(9), pages 1-18, September.
    8. Miguel Moranchel & Francisco Huerta & Inés Sanz & Emilio Bueno & Francisco J. Rodríguez, 2016. "A Comparison of Modulation Techniques for Modular Multilevel Converters," Energies, MDPI, vol. 9(12), pages 1-20, December.
    9. Nataraj Prabaharan & V. Arun & Padmanaban Sanjeevikumar & Lucian Mihet-Popa & Frede Blaabjerg, 2018. "Reconfiguration of a Multilevel Inverter with Trapezoidal Pulse Width Modulation," Energies, MDPI, vol. 11(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Madasamy & R. K. Pongiannan & Sekar Ravichandran & Sanjeevikumar Padmanaban & Bharatiraja Chokkalingam & Eklas Hossain & Yusuff Adedayo, 2019. "A Simple Multilevel Space Vector Modulation Technique and MATLAB System Generator Built FPGA Implementation for Three-Level Neutral-Point Clamped Inverter," Energies, MDPI, vol. 12(22), pages 1-24, November.
    2. Giuseppe Schettino & Guido Ala & Massimo Caruso & Vincenzo Castiglia & Filippo Pellitteri & Marco Trapanese & Fabio Viola & Rosario Miceli, 2019. "Experimental Study on B-Spline-Based Modulation Schemes Applied in Multilevel Inverters for Electric Drive Applications," Energies, MDPI, vol. 12(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xizheng Guo & Jiaqi Yuan & Yiguo Tang & Xiaojie You, 2018. "Hardware in the Loop Real-time Simulation for the Associated Discrete Circuit Modeling Optimization Method of Power Converters," Energies, MDPI, vol. 11(11), pages 1-14, November.
    2. Fabio Viola, 2018. "Experimental Evaluation of the Performance of a Three-Phase Five-Level Cascaded H-Bridge Inverter by Means FPGA-Based Control Board for Grid Connected Applications," Energies, MDPI, vol. 11(12), pages 1-47, November.
    3. Giuseppe Schettino & Guido Ala & Massimo Caruso & Vincenzo Castiglia & Filippo Pellitteri & Marco Trapanese & Fabio Viola & Rosario Miceli, 2019. "Experimental Study on B-Spline-Based Modulation Schemes Applied in Multilevel Inverters for Electric Drive Applications," Energies, MDPI, vol. 12(23), pages 1-23, November.
    4. Xu Tian & Yue Ma & Jintao Yu & Cong Wang & Hong Cheng, 2019. "A Modified One-Cycle-Control Method for Modular Multilevel Converters," Energies, MDPI, vol. 12(1), pages 1-17, January.
    5. Xu Tian & Xingcheng Li & Zibo Zhou, 2020. "Novel Uninterruptible Phase-Separation Passing and Power Quality Compensation Scheme Based on Modular Multilevel Converter for Double-Track Electrified Railway," Energies, MDPI, vol. 13(3), pages 1-17, February.
    6. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    7. Ruyun Cheng & Li Yao & Xinyang Yan & Bingda Zhang & Zhao Jin, 2021. "High Flexibility Hybrid Architecture Real-Time Simulation Platform Based on Field-Programmable Gate Array (FPGA)," Energies, MDPI, vol. 14(19), pages 1-16, September.
    8. Qinyue Zhu & Wei Dai & Lei Guan & Xitang Tan & Zhaoyang Li & Dabo Xie, 2019. "A Fault-Tolerant Control Strategy of Modular Multilevel Converter with Sub-Module Faults Based on Neutral Point Compound Shift," Energies, MDPI, vol. 12(5), pages 1-22, March.
    9. Rok Pajer & Amor Chowdhury & Miran Rodič, 2019. "Control of a Multiphase Buck Converter, Based on Sliding Mode and Disturbance Estimation, Capable of Linear Large Signal Operation," Energies, MDPI, vol. 12(14), pages 1-26, July.
    10. Hussain Mohammad Bassi & Zainal Salam, 2019. "A New Hybrid Multilevel Inverter Topology with Reduced Switch Count and dc Voltage Sources," Energies, MDPI, vol. 12(6), pages 1-15, March.
    11. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    12. Mustafa F. Mohammed & Mohammed A. Qasim, 2022. "Single Phase T-Type Multilevel Inverters for Renewable Energy Systems, Topology, Modulation, and Control Techniques: A Review," Energies, MDPI, vol. 15(22), pages 1-24, November.
    13. Junjie Zhu & Bingda Zhang, 2020. "Multi-Rate Real-Time Simulation Method Based on the Norton Equivalent," Energies, MDPI, vol. 13(17), pages 1-15, September.
    14. Muhammad Saad & Husan Ali & Huamei Liu & Shahbaz Khan & Haider Zaman & Bakht Muhammad Khan & Du Kai & Ju Yongfeng, 2018. "A dq -Domain Impedance Measurement Methodology for Three-Phase Converters in Distributed Energy Systems," Energies, MDPI, vol. 11(10), pages 1-15, October.
    15. Xiongmin Tang & Junhui Zhang & Zheng Liu & Miao Zhang, 2017. "A Switching Frequency Optimized Space Vector Pulse Width Modulation (SVPWM) Scheme for Cascaded Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-18, May.
    16. Rutian Wang & Yuyang Wu & Guoqing He & Ying Lv & Jiaxing Du & Yanhao Li, 2018. "Impedance Modeling and Stability Analysis for Cascade System of Three-Phase PWM Rectifier and LLC Resonant Converter," Energies, MDPI, vol. 11(11), pages 1-15, November.
    17. Zaid A. Aljawary & Santiago de Pablo & Luis Carlos Herrero-de Lucas & Fernando Martinez-Rodrigo, 2020. "Local Carrier PWM for Modular Multilevel Converters with Distributed PV Cells and Circulating Current Reduction," Energies, MDPI, vol. 13(21), pages 1-21, October.
    18. Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
    19. Amirreza Naderipour & Zulkurnain Abdul-Malek & Mohammad Reza Miveh & Mohammad Jafar Hadidian Moghaddam & Akhtar Kalam & Foad. H. Gandoman, 2018. "A Harmonic Compensation Strategy in a Grid-Connected Photovoltaic System Using Zero-Sequence Control," Energies, MDPI, vol. 11(10), pages 1-18, October.
    20. Robert Salas-Puente & Silvia Marzal & Raul Gonzalez-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization," Energies, MDPI, vol. 11(7), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1016-:d:214190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.