IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4122-d590719.html
   My bibliography  Save this article

Long-Term Thermal Performance of Group of Energy Piles in Unsaturated Soils under Cyclic Thermal Loading

Author

Listed:
  • Abubakar Kawuwa Sani

    (Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK)

  • Rao Martand Singh

    (Department of Civil and Environmental Engineering, Norwegian University of Science & Technology, (NTNU), 7034 Trondheim, Norway)

Abstract

Geothermal energy piles (GEPs) are an environmentally friendly heat exchange technology that dualizes the role of the structural foundation pile for load support and in meeting the building heating/cooling need. Energy loops made from high-density polyethylene, which allow heat carrier fluid circulation, are fitted into the pile foundation elements to extract or inject and store heat energy in the soil surrounding the pile. This paper reports the results of a numerical study investigating the long-term behaviour of a group of energy piles embedded in unsaturated soils (sand and clay) under continuous cyclic heating and cooling load. Additionally, two scenarios were investigated where: (1) the whole GEPs were heated and cooled collectively; (2) alternate piles were heated and cooled. It was found that the trend of temperature magnitude at all the observed locations decreases with time as a result of the continuous heating and cooling cycles. Furthermore, subjecting alternate GEPs to the heating and cooling cycles result in lower temperature development in comparison to thermally activating all the GEPs in the group. This is attributed to the applied thermal load, which is 0.5 times that considered in the first case. However, this might not be the case where equal thermal load is applied on the GEPs in the two cases investigated.

Suggested Citation

  • Abubakar Kawuwa Sani & Rao Martand Singh, 2021. "Long-Term Thermal Performance of Group of Energy Piles in Unsaturated Soils under Cyclic Thermal Loading," Energies, MDPI, vol. 14(14), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4122-:d:590719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    2. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    3. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    4. Sutman, Melis & Speranza, Gianluca & Ferrari, Alessio & Larrey-Lassalle, Pyrène & Laloui, Lyesse, 2020. "Long-term performance and life cycle assessment of energy piles in three different climatic conditions," Renewable Energy, Elsevier, vol. 146(C), pages 1177-1191.
    5. Sani, Abubakar Kawuwa & Singh, Rao Martand, 2020. "Response of unsaturated soils to heating of geothermal energy pile," Renewable Energy, Elsevier, vol. 147(P2), pages 2618-2632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beragama Jathunge, Charaka & Darbandi, Amirhossein & Dworkin, Seth B. & Mwesigye, Aggrey, 2024. "Numerical investigation of the long-term thermal performance of a novel thermo-active foundation pile coupled with a ground source heat pump in a cold-climate," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    2. Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.
    3. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Sadeghi, Habibollah & Jalali, Ramin & Singh, Rao Martand, 2024. "A review of borehole thermal energy storage and its integration into district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    6. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. ten Bosch, Sofie & Ravera, Elena & Laloui, Lyesse, 2024. "Performance of energy piles foundation in hot-dominated climate: A case study in Dubai," Renewable Energy, Elsevier, vol. 220(C).
    8. Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Ng, C.W.W. & Farivar, A. & Gomaa, S.M.M.H. & Shakeel, M. & Jafarzadeh, F., 2021. "Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading," Renewable Energy, Elsevier, vol. 172(C), pages 998-1012.
    12. Hanson, James L. & Onnen, Michael T. & Yeşiller, Nazlı & Kopp, Kevin B., 2022. "Heat energy potential of municipal solid waste landfills: Review of heat generation and assessment of vertical extraction systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    14. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    15. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    16. Pouria Abbasi & Masih Alavy & Pavel Belansky & Marc A. Rosen, 2024. "Assessment of Environmental Impacts of Thermal Caisson Geothermal Systems," Resources, MDPI, vol. 13(3), pages 1-22, March.
    17. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    18. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    19. Li, Renrong & Kong, Gangqiang & Sun, Guangchao & Zhou, Yang & Yang, Qing, 2021. "Thermomechanical characteristics of an energy pile-raft foundation under heating operations," Renewable Energy, Elsevier, vol. 175(C), pages 580-592.
    20. Cui, Ping & Jia, Linrui & Zhou, Xinlei & Yang, Wenxiao & Zhang, Wenke, 2020. "Heat transfer analysis of energy piles with parallel U-Tubes," Renewable Energy, Elsevier, vol. 161(C), pages 1046-1058.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4122-:d:590719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.