IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p620-d206288.html
   My bibliography  Save this article

Proposed Strategies for Improving Poor Hygrothermal Conditions in Museum Exhibition Rooms and Their Impact on Energy Demand

Author

Listed:
  • Joanna Ferdyn-Grygierek

    (Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland)

  • Krzysztof Grygierek

    (Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland)

Abstract

In museums, poor microclimate conditions, especially large changes in relative humidity and temperature, can lead to serious deterioration of the exhibits. Properly designed heating, ventilation, and air conditioning (HVAC) systems for precise control of the air parameters are required. However, due to the financial restrictions of museums, complex air-conditioning systems are often not feasible. In this study, we tested and propose novel methods to reduce the short- and long-term fluctuations in the relative humidity in exhibition rooms of a Polish museum. The methods only include indoor temperature and ventilation airflow control strategies, without the use of (de)humidification equipment. The analysis is based on simulations using EnergyPlus software. A multi-zone thermal model of the museum building was validated and calibrated with measured data. A full calendar year was simulated for five control cases (including the current method used) and two internal heat gain schedules. The energy demand for heating and cooling for each case was calculated. The combination of temperature control and adequate ventilation using ambient airflow allows for dramatic improvement in the microclimate conditions. The proportion of the year when the instantaneous indoor relative humidity is ±5% from set point decreased from 85% to 20%. A significant effect was obtained over the summer months.

Suggested Citation

  • Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2019. "Proposed Strategies for Improving Poor Hygrothermal Conditions in Museum Exhibition Rooms and Their Impact on Energy Demand," Energies, MDPI, vol. 12(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:620-:d:206288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmen Mª Muñoz-González & Ángel Luis León-Rodríguez & Rafael C. Suárez Medina & Catherine Teeling, 2018. "Hygrothermal Performance of Worship Spaces: Preservation, Comfort, and Energy Consumption," Sustainability, MDPI, vol. 10(11), pages 1-20, October.
    2. Kramer, R.P. & Maas, M.P.E. & Martens, M.H.J. & van Schijndel, A.W.M. & Schellen, H.L., 2015. "Energy conservation in museums using different setpoint strategies: A case study for a state-of-the-art museum using building simulations," Applied Energy, Elsevier, vol. 158(C), pages 446-458.
    3. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Ferdyn-Grygierek & Jan Kaczmarczyk & Monika Blaszczok & Piotr Lubina & Piotr Koper & Anna Bulińska, 2020. "Hygrothermal Risk in Museum Buildings Located in Moderate Climate," Energies, MDPI, vol. 13(2), pages 1-20, January.
    2. Kazuki Ishikawa & Chiemi Iba & Daisuke Ogura & Shuichi Hokoi & Misao Yokoyama, 2021. "Hygrothermal Analysis of a Museum Storage Room for Metal Cultural Artifacts: Quantification of Factors Influencing High Humidity," Energies, MDPI, vol. 14(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muñoz González, C.Mª & León Rodríguez, A.L. & Suárez Medina, R. & Ruiz Jaramillo, J., 2020. "Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings," Applied Energy, Elsevier, vol. 276(C).
    2. Nenad Šekularac & Jelena Ivanović-Šekularac & Aleksandar Petrovski & Nikola Macut & Milan Radojević, 2020. "Restoration of a Historic Building in Order to Improve Energy Efficiency and Energy Saving—Case Study—The Dining Room within the Ži?a Monastery Property," Sustainability, MDPI, vol. 12(15), pages 1-21, August.
    3. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    4. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    5. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    6. Kadri Keskküla & Tambet Aru & Mihkel Kiviste & Martti-Jaan Miljan, 2020. "Hygrothermal Analysis of Masonry Wall with Reed Boards as Interior Insulation System," Energies, MDPI, vol. 13(20), pages 1-10, October.
    7. Václav Kočí & Jan Kočí & Jiří Maděra & Jaroslav Žák & Robert Černý, 2020. "Computational Prediction of Susceptibility to Biofilms Growth: Two-Dimensional Analysis of Critical Construction Details," Energies, MDPI, vol. 13(2), pages 1-17, January.
    8. Inmaculada Gallego-Maya & Carlos Rubio-Bellido, 2024. "Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville," Energies, MDPI, vol. 17(21), pages 1-22, November.
    9. Cristina S. Polo López & Elena Lucchi & Eleonora Leonardi & Antonello Durante & Anne Schmidt & Roger Curtis, 2021. "Risk-Benefit Assessment Scheme for Renewable Solar Solutions in Traditional and Historic Buildings," Sustainability, MDPI, vol. 13(9), pages 1-35, May.
    10. Henrik Engelbrecht Foldager & Rasmus Camillus Jeppesen & Muhyiddine Jradi, 2019. "DanRETRO: A Decision-Making Tool for Energy Retrofit Design and Assessment of Danish Buildings," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    11. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    13. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    14. Laura Balaguer & Fernando Vegas López-Manzanares & Camilla Mileto & Lidia García-Soriano, 2019. "Assessment of the Thermal Behaviour of Rammed Earth Walls in the Summer Period," Sustainability, MDPI, vol. 11(7), pages 1-12, April.
    15. Mirco Andreotti & Dario Bottino-Leone & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Alexandra Troi, 2020. "Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations," Energies, MDPI, vol. 13(13), pages 1-22, July.
    16. Blázquez, Teresa & Ferrari, Simone & Suárez, Rafael & Sendra, Juan José, 2019. "Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat," Energy, Elsevier, vol. 181(C), pages 504-520.
    17. Mariangela De Vita & Giulia Massari & Pierluigi De Berardinis, 2020. "Retrofit Methodology Based on Energy Simulation Modeling Applied for the Enhancement of a Historical Building in L’Aquila," Energies, MDPI, vol. 13(12), pages 1-26, June.
    18. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    19. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    20. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:620-:d:206288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.