IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p620-d206288.html
   My bibliography  Save this article

Proposed Strategies for Improving Poor Hygrothermal Conditions in Museum Exhibition Rooms and Their Impact on Energy Demand

Author

Listed:
  • Joanna Ferdyn-Grygierek

    (Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland)

  • Krzysztof Grygierek

    (Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland)

Abstract

In museums, poor microclimate conditions, especially large changes in relative humidity and temperature, can lead to serious deterioration of the exhibits. Properly designed heating, ventilation, and air conditioning (HVAC) systems for precise control of the air parameters are required. However, due to the financial restrictions of museums, complex air-conditioning systems are often not feasible. In this study, we tested and propose novel methods to reduce the short- and long-term fluctuations in the relative humidity in exhibition rooms of a Polish museum. The methods only include indoor temperature and ventilation airflow control strategies, without the use of (de)humidification equipment. The analysis is based on simulations using EnergyPlus software. A multi-zone thermal model of the museum building was validated and calibrated with measured data. A full calendar year was simulated for five control cases (including the current method used) and two internal heat gain schedules. The energy demand for heating and cooling for each case was calculated. The combination of temperature control and adequate ventilation using ambient airflow allows for dramatic improvement in the microclimate conditions. The proportion of the year when the instantaneous indoor relative humidity is ±5% from set point decreased from 85% to 20%. A significant effect was obtained over the summer months.

Suggested Citation

  • Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2019. "Proposed Strategies for Improving Poor Hygrothermal Conditions in Museum Exhibition Rooms and Their Impact on Energy Demand," Energies, MDPI, vol. 12(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:620-:d:206288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmen Mª Muñoz-González & Ángel Luis León-Rodríguez & Rafael C. Suárez Medina & Catherine Teeling, 2018. "Hygrothermal Performance of Worship Spaces: Preservation, Comfort, and Energy Consumption," Sustainability, MDPI, vol. 10(11), pages 1-20, October.
    2. Kramer, R.P. & Maas, M.P.E. & Martens, M.H.J. & van Schijndel, A.W.M. & Schellen, H.L., 2015. "Energy conservation in museums using different setpoint strategies: A case study for a state-of-the-art museum using building simulations," Applied Energy, Elsevier, vol. 158(C), pages 446-458.
    3. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Ferdyn-Grygierek & Jan Kaczmarczyk & Monika Blaszczok & Piotr Lubina & Piotr Koper & Anna Bulińska, 2020. "Hygrothermal Risk in Museum Buildings Located in Moderate Climate," Energies, MDPI, vol. 13(2), pages 1-20, January.
    2. Kazuki Ishikawa & Chiemi Iba & Daisuke Ogura & Shuichi Hokoi & Misao Yokoyama, 2021. "Hygrothermal Analysis of a Museum Storage Room for Metal Cultural Artifacts: Quantification of Factors Influencing High Humidity," Energies, MDPI, vol. 14(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nenad Šekularac & Jelena Ivanović-Šekularac & Aleksandar Petrovski & Nikola Macut & Milan Radojević, 2020. "Restoration of a Historic Building in Order to Improve Energy Efficiency and Energy Saving—Case Study—The Dining Room within the Žiča Monastery Property," Sustainability, MDPI, vol. 12(15), pages 1-21, August.
    2. Muñoz González, C.Mª & León Rodríguez, A.L. & Suárez Medina, R. & Ruiz Jaramillo, J., 2020. "Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings," Applied Energy, Elsevier, vol. 276(C).
    3. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    4. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    5. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    6. Mariangela De Vita & Francesco Duronio & Angelo De Vita & Pierluigi De Berardinis, 2022. "Adaptive Retrofit for Adaptive Reuse: Converting an Industrial Chimney into a Ventilation Duct to Improve Internal Comfort in a Historic Environment," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    7. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    8. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    9. Jolando M. Kisse & Martin Braun & Simon Letzgus & Tanja M. Kneiske, 2020. "A GIS-Based Planning Approach for Urban Power and Natural Gas Distribution Grids with Different Heat Pump Scenarios," Energies, MDPI, vol. 13(16), pages 1-31, August.
    10. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    11. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    12. Kadri Keskküla & Tambet Aru & Mihkel Kiviste & Martti-Jaan Miljan, 2020. "Hygrothermal Analysis of Masonry Wall with Reed Boards as Interior Insulation System," Energies, MDPI, vol. 13(20), pages 1-10, October.
    13. Václav Kočí & Jan Kočí & Jiří Maděra & Jaroslav Žák & Robert Černý, 2020. "Computational Prediction of Susceptibility to Biofilms Growth: Two-Dimensional Analysis of Critical Construction Details," Energies, MDPI, vol. 13(2), pages 1-17, January.
    14. Yasmine Sabry Hegazi & Heidi Ahmed Shalaby & Mady A. A. Mohamed, 2021. "Adaptive Reuse Decisions for Historic Buildings in Relation to Energy Efficiency and Thermal Comfort—Cairo Citadel, a Case Study from Egypt," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    15. Joaquín Fuentes-del-Burgo & Elena Navarro-Astor & Nuno M. M. Ramos & João Poças Martins, 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    16. Cristina S. Polo López & Elena Lucchi & Eleonora Leonardi & Antonello Durante & Anne Schmidt & Roger Curtis, 2021. "Risk-Benefit Assessment Scheme for Renewable Solar Solutions in Traditional and Historic Buildings," Sustainability, MDPI, vol. 13(9), pages 1-35, May.
    17. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    18. Henrik Engelbrecht Foldager & Rasmus Camillus Jeppesen & Muhyiddine Jradi, 2019. "DanRETRO: A Decision-Making Tool for Energy Retrofit Design and Assessment of Danish Buildings," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    19. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Pochwała, Sławomir & Anweiler, Stanisław & Tańczuk, Mariusz & Klementowski, Igor & Przysiężniuk, Dawid & Adrian, Łukasz & McNamara, Greg & Stevanović, Žana, 2023. "Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:620-:d:206288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.