IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p4839-d264154.html
   My bibliography  Save this article

Resonance Detection Strategy for Multi-Parallel Inverter-Based Grid-Connected Renewable Power System Using Cascaded SOGI-FLL

Author

Listed:
  • Wu Cao

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Nanjing 210096, China)

  • Kangli Liu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Haotian Kang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Shunyu Wang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Dongchen Fan

    (State Grid Jiangsu Electric Power Co., Ltd. Research Institute., Nanjing 210096, China)

  • Jianfeng Zhao

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

The increasing use of multi-parallel grid-connected inverters introduces both high-quality and high-capacity power, while it tends to cause a resonance instability problem. A resonance damper can virtualize a resistor at resonant frequency to suppress the instability effectively, but the resonant frequency should be detected primarily. However, the resonant current or voltage is severely distorted and oscillating, which will lead to the resonant frequency extraction being more difficult. To address it, this paper proposes a resonance detection strategy based on the cascaded second-order generalized integrators (SOGI) and the normalized frequency locked loop (FLL). The cascaded structure ensures the accuracy by completely filtering the fundamental component from the detected voltage or current, and the normalization accelerates the frequency detection. The proposed method can be used as a crucial unit of the resonance damping controller. Finally, the performance of the proposed method is verified by the MATLAB-based simulation and Hardware-in-the-Loop (HIL)-based emulation results.

Suggested Citation

  • Wu Cao & Kangli Liu & Haotian Kang & Shunyu Wang & Dongchen Fan & Jianfeng Zhao, 2019. "Resonance Detection Strategy for Multi-Parallel Inverter-Based Grid-Connected Renewable Power System Using Cascaded SOGI-FLL," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4839-:d:264154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/4839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/4839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yifei Wang & Youxin Yuan, 2019. "Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    2. Wu Cao & Kangli Liu & Shunyu Wang & Haotian Kang & Dongchen Fan & Jianfeng Zhao, 2019. "Harmonic Stability Analysis for Multi-Parallel Inverter-Based Grid-Connected Renewable Power System Using Global Admittance," Energies, MDPI, vol. 12(14), pages 1-16, July.
    3. Jingrong Yu & Limin Deng & Dongran Song & Maolin Pei, 2019. "Wide Bandwidth Control for Multi-Parallel Grid-Connected Inverters with Harmonic Compensation," Energies, MDPI, vol. 12(3), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Wajahat Ali & Chun-Lien Su & Anant Kumar Verma & Claudio Burgos Mellado & Catalina Gonzalez-Castano, 2023. "Enhancing Single-Phase Grid Integration Capability of PMSG-Based Wind Turbines to Support Grid Operation under Adverse Conditions," Sustainability, MDPI, vol. 15(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliyu Sabo & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman & Mai Zurwatul Ahlam Mohd Jaffar & Hakan Acikgoz & Hamzeh Beiranvand, 2020. "Application of Neuro-Fuzzy Controller to Replace SMIB and Interconnected Multi-Machine Power System Stabilizers," Sustainability, MDPI, vol. 12(22), pages 1-42, November.
    2. Md Asaduzzaman Shobug & Nafis Ahmed Chowdhury & Md Alamgir Hossain & Mohammad J. Sanjari & Junwei Lu & Fuwen Yang, 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects," Energies, MDPI, vol. 17(11), pages 1-33, June.
    3. Haijun Tao & Yousong Zhou & Guopeng Zhang & Zheng Zheng, 2019. "Parallel Resonance Mechanism Analysis and Suppression of Inductance-Capacitance-Inductance Grid-Connected Inverters," Energies, MDPI, vol. 12(9), pages 1-15, April.
    4. Nabil Mohammed & Mihai Ciobotaru & Graham Town, 2019. "Online Parametric Estimation of Grid Impedance Under Unbalanced Grid Conditions," Energies, MDPI, vol. 12(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4839-:d:264154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.