IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7118-d1261284.html
   My bibliography  Save this article

Enhancing Grid Operation with Electric Vehicle Integration in Automatic Generation Control

Author

Listed:
  • Zahid Ullah

    (Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy)

  • Kaleem Ullah

    (US-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology Peshawar, Peshawar 25000, Pakistan)

  • Cesar Diaz-Londono

    (Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy)

  • Giambattista Gruosso

    (Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy)

  • Abdul Basit

    (Manager R&D, National Power Control Center, National Transmission and Dispatch Company, Islamabad 44000, Pakistan)

Abstract

Wind energy has been recognized as a clean energy source with significant potential for reducing carbon emissions. However, its inherent variability poses substantial challenges for power system operators due to its unpredictable nature. As a result, there is an increased dependence on conventional generation sources to uphold the power system balance, resulting in elevated operational costs and an upsurge in carbon emissions. Hence, an urgent need exists for alternative solutions that can reduce the burden on traditional generating units and optimize the utilization of reserves from non-fossil fuel technologies. Meanwhile, vehicle-to-grid (V2G) technology integration has emerged as a remedial approach to rectify power capacity shortages during grid operations, enhancing stability and reliability. This research focuses on harnessing electric vehicle (EV) storage capacity to compensate for power deficiencies caused by forecasting errors in large-scale wind energy-based power systems. A real-time dynamic power dispatch strategy is developed for the automatic generation control (AGC) system to integrate EVs and utilize their reserves optimally to reduce reliance on conventional power plants and increase system security. The results obtained from this study emphasize the significant prospects associated with the fusion of EVs and traditional power plants, offering a highly effective solution for mitigating real-time power imbalances in large-scale wind energy-based power systems.

Suggested Citation

  • Zahid Ullah & Kaleem Ullah & Cesar Diaz-Londono & Giambattista Gruosso & Abdul Basit, 2023. "Enhancing Grid Operation with Electric Vehicle Integration in Automatic Generation Control," Energies, MDPI, vol. 16(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7118-:d:1261284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cesar Diaz-Londono & José Vuelvas & Giambattista Gruosso & Carlos Adrian Correa-Florez, 2022. "Remuneration Sensitivity Analysis in Prosumer and Aggregator Strategies by Controlling Electric Vehicle Chargers," Energies, MDPI, vol. 15(19), pages 1-24, September.
    2. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    3. Rahmat Khezri & Arman Oshnoei & Mehrdad Tarafdar Hagh & SM Muyeen, 2018. "Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers," Energies, MDPI, vol. 11(2), pages 1-21, February.
    4. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    5. Rafiq Asghar & Zahid Ullah & Babar Azeem & Sheraz Aslam & Muhammad Harris Hashmi & Ehtsham Rasool & Bilawal Shaker & Muhammad Junaid Anwar & Kainat Mustafa, 2022. "Wind Energy Potential in Pakistan: A Feasibility Study in Sindh Province," Energies, MDPI, vol. 15(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cesar Diaz-Londono & Yang Li, 2024. "Smart Electric Vehicle Charging Approaches for Demand Response," Energies, MDPI, vol. 17(24), pages 1-3, December.
    2. Bin Li & Haoran Li & Zhencheng Liang & Xiaoqing Bai, 2024. "Load Day-Ahead Automatic Generation Control Reserve Capacity Demand Prediction Based on the Attention-BiLSTM Network Model Optimized by Improved Whale Algorithm," Energies, MDPI, vol. 17(2), pages 1-25, January.
    3. Sulman Shahzad & Elżbieta Jasińska, 2024. "Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems," Sustainability, MDPI, vol. 16(13), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaleem Ullah & Abdul Basit & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez, 2022. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-24, February.
    2. Kaleem Ullah & Zahid Ullah & Sheraz Aslam & Muhammad Salik Salam & Muhammad Asjad Salahuddin & Muhammad Farooq Umer & Mujtaba Humayon & Haris Shaheer, 2023. "Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation," Energies, MDPI, vol. 16(14), pages 1-34, July.
    3. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    4. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    5. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    6. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    7. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    8. Jayawardena, A.V. & Meegahapola, L.G. & Robinson, D.A. & Perera, S., 2015. "Microgrid capability diagram: A tool for optimal grid-tied operation," Renewable Energy, Elsevier, vol. 74(C), pages 497-504.
    9. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    10. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    11. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    12. Héctor Migallón & Akram Belazi & José-Luis Sánchez-Romero & Héctor Rico & Antonio Jimeno-Morenilla, 2020. "Settings-Free Hybrid Metaheuristic General Optimization Methods," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    13. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    14. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    15. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    16. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    17. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    18. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    19. Da Xie & Haoxiang Chu & Yupu Lu & Chenghong Gu & Furong Li & Yu Zhang, 2015. "The Concept of EV’s Intelligent Integrated Station and Its Energy Flow," Energies, MDPI, vol. 8(5), pages 1-28, May.
    20. Ali Javaid & Umer Javaid & Muhammad Sajid & Muhammad Rashid & Emad Uddin & Yasar Ayaz & Adeel Waqas, 2022. "Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning," Energies, MDPI, vol. 15(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7118-:d:1261284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.