IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v205y2017icp304-315.html
   My bibliography  Save this article

H2-optimal transactive control of electric power regulation from fast-acting demand response in the presence of high renewables

Author

Listed:
  • Chassin, David P.
  • Behboodi, Sahand
  • Shi, Yang
  • Djilali, Ned

Abstract

This paper presents an H2-optimal power regulation scheme for balancing authorities to provide regulation services using both generation and load resources in the presence of a significant amount of intermittent renewable generation. The optimal controller is designed to minimize the loss of total economic surplus due to deviations from the schedule because of generation contingencies. The results show that the optimal controller outperforms the conventional ACE control policy by (1) providing faster return to the schedule under varying demand response levels, (2) reducing the cost of using reserve units for regulation services, and (3) minimizing deviations from the global surplus-maximizing schedule.

Suggested Citation

  • Chassin, David P. & Behboodi, Sahand & Shi, Yang & Djilali, Ned, 2017. "H2-optimal transactive control of electric power regulation from fast-acting demand response in the presence of high renewables," Applied Energy, Elsevier, vol. 205(C), pages 304-315.
  • Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:304-315
    DOI: 10.1016/j.apenergy.2017.07.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falahati, Saber & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2016. "Grid frequency control with electric vehicles by using of an optimized fuzzy controller," Applied Energy, Elsevier, vol. 178(C), pages 918-928.
    2. Teng, Fei & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Zeng, Pingliang & Strbac, Goran, 2017. "Challenges on primary frequency control and potential solution from EVs in the future GB electricity system," Applied Energy, Elsevier, vol. 194(C), pages 353-362.
    3. Zhong, Jin & He, Lina & Li, Canbing & Cao, Yijia & Wang, Jianhui & Fang, Baling & Zeng, Long & Xiao, Guoxuan, 2014. "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, Elsevier, vol. 123(C), pages 253-262.
    4. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2017. "Interconnection-wide hour-ahead scheduling in the presence of intermittent renewables and demand response: A surplus maximizing approach," Applied Energy, Elsevier, vol. 189(C), pages 336-351.
    5. Lakshmanan, Venkatachalam & Marinelli, Mattia & Hu, Junjie & Bindner, Henrik W., 2016. "Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark," Applied Energy, Elsevier, vol. 173(C), pages 470-480.
    6. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
    2. Chassin, David P. & Behboodi, Sahand & Djilali, Ned, 2018. "Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability," Applied Energy, Elsevier, vol. 213(C), pages 262-271.
    3. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    4. Nguyen, Hieu Trung & Battula, Swathi & Takkala, Rohit Reddy & Wang, Zhaoyu & Tesfatsion, Leigh, 2019. "An integrated transmission and distribution test system for evaluation of transactive energy designs," Applied Energy, Elsevier, vol. 240(C), pages 666-679.
    5. Janko, Samantha A. & Johnson, Nathan G., 2018. "Scalable multi-agent microgrid negotiations for a transactive energy market," Applied Energy, Elsevier, vol. 229(C), pages 715-727.
    6. Zhao, Zhida & Yu, Hao & Li, Peng & Li, Peng & Kong, Xiangyu & Wu, Jianzhong & Wang, Chengshan, 2019. "Optimal placement of PMUs and communication links for distributed state estimation in distribution networks," Applied Energy, Elsevier, vol. 256(C).
    7. Khalid Alnowibet & Andres Annuk & Udaya Dampage & Mohamed A. Mohamed, 2021. "Effective Energy Management via False Data Detection Scheme for the Interconnected Smart Energy Hub–Microgrid System under Stochastic Framework," Sustainability, MDPI, vol. 13(21), pages 1-32, October.
    8. Yu, Min Gyung & Pavlak, Gregory S., 2021. "Assessing the performance of uncertainty-aware transactive controls for building thermal energy storage systems," Applied Energy, Elsevier, vol. 282(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hui & Wang, Bin & Wang, Ni & Wu, Qiuwei & Yang, Yude & Wei, Hua & Li, Canbing, 2018. "Enabling strategies of electric vehicles for under frequency load shedding," Applied Energy, Elsevier, vol. 228(C), pages 843-851.
    2. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    3. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    4. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    5. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    6. Jiang, Bo & Muzhikyan, Aramazd & Farid, Amro M. & Youcef-Toumi, Kamal, 2017. "Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 187(C), pages 833-846.
    7. Adlan Pradana & Mejbaul Haque & Mithulanathan Nadarajah, 2023. "Control Strategies of Electric Vehicles Participating in Ancillary Services: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-36, February.
    8. Malik, Anam & Ravishankar, Jayashri, 2018. "A hybrid control approach for regulating frequency through demand response," Applied Energy, Elsevier, vol. 210(C), pages 1347-1362.
    9. Bomela, Walter & Zlotnik, Anatoly & Li, Jr-Shin, 2018. "A phase model approach for thermostatically controlled load demand response," Applied Energy, Elsevier, vol. 228(C), pages 667-680.
    10. Rahmat Khezri & Arman Oshnoei & Mehrdad Tarafdar Hagh & SM Muyeen, 2018. "Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers," Energies, MDPI, vol. 11(2), pages 1-21, February.
    11. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2017. "Interconnection-wide hour-ahead scheduling in the presence of intermittent renewables and demand response: A surplus maximizing approach," Applied Energy, Elsevier, vol. 189(C), pages 336-351.
    12. Chassin, David P. & Behboodi, Sahand & Djilali, Ned, 2018. "Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability," Applied Energy, Elsevier, vol. 213(C), pages 262-271.
    13. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Nolan, Sheila & Neu, Olivier & O’Malley, Mark, 2017. "Capacity value estimation of a load-shifting resource using a coupled building and power system model," Applied Energy, Elsevier, vol. 192(C), pages 71-82.
    15. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    16. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    17. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.
    18. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    19. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    20. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:304-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.