Deep Reinforcement Learning for Cascaded Hydropower Reservoirs Considering Inflow Forecasts
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-020-02600-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sunyong Kim & Hyuk Lim, 2018. "Reinforcement Learning Based Energy Management Algorithm for Smart Energy Buildings," Energies, MDPI, vol. 11(8), pages 1-19, August.
- P. Mujumdar & B. Nirmala, 2007. "A Bayesian Stochastic Optimization Model for a Multi-Reservoir Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1465-1485, September.
- Guolei Tang & Huicheng Zhou & Ningning Li & Feng Wang & Yajun Wang & Deping Jian, 2010. "Value of Medium-range Precipitation Forecasts in Inflow Prediction and Hydropower Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2721-2742, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yoan Villeneuve & Sara Séguin & Abdellah Chehri, 2023. "AI-Based Scheduling Models, Optimization, and Prediction for Hydropower Generation: Opportunities, Issues, and Future Directions," Energies, MDPI, vol. 16(8), pages 1-27, April.
- Xiaoling Ding & Xiaocong Mo & Jianzhong Zhou & Sheng Bi & Benjun Jia & Xiang Liao, 2021. "Long-Term Scheduling of Cascade Reservoirs Considering Inflow Forecasting Uncertainty Based on a Disaggregation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 645-660, January.
- Danyang Gao & Albert S. Chen & Fayyaz Ali Memon, 2024. "A Systematic Review of Methods for Investigating Climate Change Impacts on Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 1-43, January.
- Carlotta Tubeuf & Felix Birkelbach & Anton Maly & René Hofmann, 2023. "Increasing the Flexibility of Hydropower with Reinforcement Learning on a Digital Twin Platform," Energies, MDPI, vol. 16(4), pages 1-10, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
- Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
- Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
- Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
- Alcigeimes Celeste & Max Billib, 2010. "The Role of Spill and Evaporation in Reservoir Optimization Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 617-628, March.
- Qiuxiang Jiang & Tian Wang & Zilong Wang & Qiang Fu & Zhimei Zhou & Youzhu Zhao & Yujie Dong, 2018. "HHM- and RFRM-Based Water Resource System Risk Identification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 4045-4061, September.
- Ki-Beom Lee & Mohamed A. Ahmed & Dong-Ki Kang & Young-Chon Kim, 2020. "Deep Reinforcement Learning Based Optimal Route and Charging Station Selection," Energies, MDPI, vol. 13(23), pages 1-22, November.
- Grace Muriithi & Sunetra Chowdhury, 2021. "Optimal Energy Management of a Grid-Tied Solar PV-Battery Microgrid: A Reinforcement Learning Approach," Energies, MDPI, vol. 14(9), pages 1-24, May.
- Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
- Aguilar, J. & Garces-Jimenez, A. & R-Moreno, M.D. & García, Rodrigo, 2021. "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Liu, Yuan & Ji, Changming & Wang, Yi & Zhang, Yanke & Jiang, Zhiqiang & Ma, Qiumei & Hou, Xiaoning, 2023. "Effect of the quality of streamflow forecasts on the operation of cascade hydropower stations using stochastic optimization models," Energy, Elsevier, vol. 273(C).
- Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
- Majid Dehghani & Hossein Riahi-Madvar & Farhad Hooshyaripor & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Kwok-wing Chau, 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 12(2), pages 1-20, January.
- A. Lust & K.-H. Waldmann, 2019. "A general storage model with applications to energy systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 71-97, March.
- Svetozarevic, B. & Baumann, C. & Muntwiler, S. & Di Natale, L. & Zeilinger, M.N. & Heer, P., 2022. "Data-driven control of room temperature and bidirectional EV charging using deep reinforcement learning: Simulations and experiments," Applied Energy, Elsevier, vol. 307(C).
- Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.
- Khawaja Haider Ali & Marvin Sigalo & Saptarshi Das & Enrico Anderlini & Asif Ali Tahir & Mohammad Abusara, 2021. "Reinforcement Learning for Energy-Storage Systems in Grid-Connected Microgrids: An Investigation of Online vs. Offline Implementation," Energies, MDPI, vol. 14(18), pages 1-18, September.
- Ahmed M. Abed & Ali AlArjani, 2022. "The Neural Network Classifier Works Efficiently on Searching in DQN Using the Autonomous Internet of Things Hybridized by the Metaheuristic Techniques to Reduce the EVs’ Service Scheduling Time," Energies, MDPI, vol. 15(19), pages 1-25, September.
- Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2019. "Q-Learning-Based Operation Strategy for Community Battery Energy Storage System (CBESS) in Microgrid System," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
More about this item
Keywords
Aggregation-disaggregation model; Bayesian theory; Cascaded hydropower reservoirs; Deep reinforcement learning; Large discrete action space;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:9:d:10.1007_s11269-020-02600-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.