IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p250-d197835.html
   My bibliography  Save this article

Process Technologies and Projects for BioLPG

Author

Listed:
  • Eric Johnson

    (Atlantic Consulting, 8136 Gattikon, Switzerland)

Abstract

Liquified petroleum gas (LPG)—currently consumed at some 300 million tonnes per year—consists of propane, butane, or a mixture of the two. Most of the world’s LPG is fossil, but recently, BioLPG has been commercialized as well. This paper reviews all possible synthesis routes to BioLPG: conventional chemical processes, biological processes, advanced chemical processes, and other. Processes are described, and projects are documented as of early 2018. The paper was compiled through an extensive literature review and a series of interviews with participants and stakeholders. Only one process is already commercial: hydrotreatment of bio-oils. Another, fermentation of sugars, has reached demonstration scale. The process with the largest potential for volume is gaseous conversion and synthesis of two feedstocks, cellulosics or organic wastes. In most cases, BioLPG is produced as a byproduct, i.e., a minor output of a multi-product process. BioLPG’s proportion of output varies according to detailed process design: for example, the advanced chemical processes can produce BioLPG at anywhere from 0–10% of output. All these processes and projects will be of interest to researchers, developers and LPG producers/marketers.

Suggested Citation

  • Eric Johnson, 2019. "Process Technologies and Projects for BioLPG," Energies, MDPI, vol. 12(2), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:250-:d:197835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    2. Pauli Kallio & András Pásztor & Kati Thiel & M. Kalim Akhtar & Patrik R. Jones, 2014. "An engineered pathway for the biosynthesis of renewable propane," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qyyum, Muhammad Abdul & Naquash, Ahmad & Haider, Junaid & Al-Sobhi, Saad A. & Lee, Moonyong, 2022. "State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward," Energy, Elsevier, vol. 238(PA).
    2. Iram Razaq & Keith E. Simons & Jude A. Onwudili, 2021. "Parametric Study of Pt/C-Catalysed Hydrothermal Decarboxylation of Butyric Acid as a Potential Route for Biopropane Production," Energies, MDPI, vol. 14(11), pages 1-15, June.
    3. Kelbert, Maikon & Machado, Thiago O. & Araújo, Pedro H.H. & Sayer, Claudia & de Oliveira, Débora & Maziero, Priscila & Simons, Keith E. & Carciofi, Bruno A.M., 2024. "Perspectives on biotechnological production of butyric acid from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Natália de Almeida Menezes & Isadora Luiza Clímaco Cunha & Moisés Teles dos Santos & Luiz Kulay, 2022. "Obtaining bioLPG via the HVO Route in Brazil: A Prospect Study Based on Life Cycle Assessment Approach," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    5. Kimball C. Chen & Matthew Leach & Mairi J. Black & Meron Tesfamichael & Francis Kemausuor & Patrick Littlewood & Terry Marker & Onesmus Mwabonje & Yacob Mulugetta & Richard J. Murphy & Rocio Diaz-Chav, 2021. "BioLPG for Clean Cooking in Sub-Saharan Africa: Present and Future Feasibility of Technologies, Feedstocks, Enabling Conditions and Financing," Energies, MDPI, vol. 14(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    2. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    3. Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
    4. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    5. Munir, M. Tajammal & Mansouri, Seyed Soheil & Udugama, Isuru A. & Baroutian, Saeid & Gernaey, Krist V. & Young, Brent R., 2018. "Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 64-75.
    6. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    7. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    8. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Guodong Yin & Heng Zhong & Guodong Yao & Fangming Jin & Jianfu Zhao, 2021. "Production of Acrylic Acid from Biomass-Derived Fumaric Acid under Hydrothermal Conditions," Energies, MDPI, vol. 14(17), pages 1-9, September.
    10. Briongos, J.V. & Taramona, S. & Gómez-Hernández, J. & Mulone, V. & Santana, D., 2021. "Solar and biomass hybridization through hydrothermal carbonization," Renewable Energy, Elsevier, vol. 177(C), pages 268-279.
    11. Jogi, Ramakrishna & Samikannu, Ajaikumar & Mäki-Arvela, Päivi & Virtanen, Pasi & Hemming, Jarl & Smeds, Annika & Mukesh, Chandrakant & Lestander, Torbjörn A. & Xu, Chunlin & Mikkola, Jyri-Pekka, 2024. "Liquefaction of lignocellulosic biomass into phenolic monomers and dimers over multifunctional Pd/NbOPO4 catalyst," Renewable Energy, Elsevier, vol. 233(C).
    12. Ayaz Ali Shah & Saqib Sohail Toor & Asbjørn Haaning Nielsen & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2021. "Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon," Energies, MDPI, vol. 14(12), pages 1-20, June.
    13. Marco Balsamo & Francesca Di Lauro & Maria Laura Alfieri & Paola Manini & Piero Salatino & Fabio Montagnaro & Roberto Solimene, 2024. "Unravelling the Role of Biochemical Compounds within the Hydrothermal Liquefaction Process of Real Sludge Mixtures," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    14. Okolie, Jude A. & Nanda, Sonil & Dalai, Ajay K. & Berruti, Franco & Kozinski, Janusz A., 2020. "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Wilk, Małgorzata & Śliz, Maciej & Gajek, Marcin, 2021. "The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp," Renewable Energy, Elsevier, vol. 177(C), pages 216-228.
    16. Saqib Sohail Toor & Ayaz Ali Shah & Kamaldeep Sharma & Tahir Hussain Seehar & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2022. "Bio-Crude Production from Protein-Extracted Grass Residue through Hydrothermal Liquefaction," Energies, MDPI, vol. 15(1), pages 1-15, January.
    17. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    18. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    19. Zhao, Kaige & Li, Wanqing & Yu, Yingying & Chen, Guanyi & Yan, Beibei & Cheng, Zhanjun & Zhao, Hai & Fang, Yang, 2023. "Speciation and transformation of nitrogen in the hydrothermal liquefaction of wastewater-treated duckweed for the bio-oil production," Renewable Energy, Elsevier, vol. 204(C), pages 661-670.
    20. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:250-:d:197835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.