IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2683-d787883.html
   My bibliography  Save this article

Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass

Author

Listed:
  • Dimitrios Koutsonikolas

    (Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, CPERI-CERTH, 57001 ThessalonikI, Greece)

  • George Karagiannakis

    (Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, CPERI-CERTH, 57001 ThessalonikI, Greece)

  • Konstantinos Plakas

    (Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, CPERI-CERTH, 57001 ThessalonikI, Greece)

  • Vasileios Chatzis

    (Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, CPERI-CERTH, 57001 ThessalonikI, Greece)

  • George Skevis

    (Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, CPERI-CERTH, 57001 ThessalonikI, Greece)

  • Paola Giudicianni

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, STEMS-CNR, 80125 Naples, Italy)

  • Davide Amato

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, STEMS-CNR, 80125 Naples, Italy)

  • Pino Sabia

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, STEMS-CNR, 80125 Naples, Italy)

  • Nikolaos Boukis

    (Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, IKFT-KIT, Eggenstein-Leopoldshafen, 76131 Karlsruhe, Germany)

  • Katharina Stoll

    (Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, IKFT-KIT, Eggenstein-Leopoldshafen, 76131 Karlsruhe, Germany)

Abstract

Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made.

Suggested Citation

  • Dimitrios Koutsonikolas & George Karagiannakis & Konstantinos Plakas & Vasileios Chatzis & George Skevis & Paola Giudicianni & Davide Amato & Pino Sabia & Nikolaos Boukis & Katharina Stoll, 2022. "Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass," Energies, MDPI, vol. 15(7), pages 1-35, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2683-:d:787883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    2. Millar, Graeme J. & Couperthwaite, Sara J. & Moodliar, Cameron D., 2016. "Strategies for the management and treatment of coal seam gas associated water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 669-691.
    3. Han, Jingyang & Ji, Xu & Xu, Haiyang & Heng, Yuanyuan & Wang, Cong & Deng, Jia, 2020. "Solar vaporizing desalination by heat concentration," Renewable Energy, Elsevier, vol. 154(C), pages 201-208.
    4. Ameera F. Mohammad & Ali H. Al-Marzouqi & Muftah H. El-Naas & Bart Van der Bruggen & Mohamed H. Al-Marzouqi, 2021. "A New Process for the Recovery of Ammonia from Ammoniated High-Salinity Brine," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    5. Ebenezer T. Igunnu & George Z. Chen, 2014. "Produced water treatment technologies," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(3), pages 157-177.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    2. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    3. Geng, Jiabo & Zeng, Gaoxiong & Liu, Cunyang & Li, Xiaoshuang & Zhang, Dongming, 2023. "Development and application of triaxial seepage test system for gas-water two-phase in coal rock," Energy, Elsevier, vol. 277(C).
    4. Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
    5. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    6. Eric Johnson, 2019. "Process Technologies and Projects for BioLPG," Energies, MDPI, vol. 12(2), pages 1-29, January.
    7. Munir, M. Tajammal & Mansouri, Seyed Soheil & Udugama, Isuru A. & Baroutian, Saeid & Gernaey, Krist V. & Young, Brent R., 2018. "Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 64-75.
    8. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    9. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Guodong Yin & Heng Zhong & Guodong Yao & Fangming Jin & Jianfu Zhao, 2021. "Production of Acrylic Acid from Biomass-Derived Fumaric Acid under Hydrothermal Conditions," Energies, MDPI, vol. 14(17), pages 1-9, September.
    11. Briongos, J.V. & Taramona, S. & Gómez-Hernández, J. & Mulone, V. & Santana, D., 2021. "Solar and biomass hybridization through hydrothermal carbonization," Renewable Energy, Elsevier, vol. 177(C), pages 268-279.
    12. Chen, Yingxu & Ji, Xu & Lv, Guanchao & Jia, Yicong & Yang, Bianfeng & Han, Jingyang, 2023. "Study on compound parabolic concentrating vaporized desalination system with preheating and heat recovery," Energy, Elsevier, vol. 276(C).
    13. Ayaz Ali Shah & Saqib Sohail Toor & Asbjørn Haaning Nielsen & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2021. "Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon," Energies, MDPI, vol. 14(12), pages 1-20, June.
    14. Marco Balsamo & Francesca Di Lauro & Maria Laura Alfieri & Paola Manini & Piero Salatino & Fabio Montagnaro & Roberto Solimene, 2024. "Unravelling the Role of Biochemical Compounds within the Hydrothermal Liquefaction Process of Real Sludge Mixtures," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    15. Okolie, Jude A. & Nanda, Sonil & Dalai, Ajay K. & Berruti, Franco & Kozinski, Janusz A., 2020. "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Marwa M. Waly & Slobodan B. Mickovski & Craig Thomson, 2023. "Application of Circular Economy in Oil and Gas Produced Water Treatment," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    17. Wilk, Małgorzata & Śliz, Maciej & Gajek, Marcin, 2021. "The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp," Renewable Energy, Elsevier, vol. 177(C), pages 216-228.
    18. Tiffany Liden & Zacariah L. Hildenbrand & Ramon Sanchez-Rosario & Kevin A. Schug, 2022. "Characterizing Various Produced Waters from Shale Energy Extraction within the Context of Reuse," Energies, MDPI, vol. 15(13), pages 1-15, June.
    19. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    20. Saqib Sohail Toor & Ayaz Ali Shah & Kamaldeep Sharma & Tahir Hussain Seehar & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2022. "Bio-Crude Production from Protein-Extracted Grass Residue through Hydrothermal Liquefaction," Energies, MDPI, vol. 15(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2683-:d:787883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.