IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4677-d295778.html
   My bibliography  Save this article

A Marine Gas Turbine Fault Diagnosis Method Based on Endogenous Irreversible Loss

Author

Listed:
  • Yunpeng Cao

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Junqi Luan

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Guodong Han

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Xinran Lv

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Shuying Li

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

When a malfunction occurs in a marine gas turbine, its thermal efficiency will decrease slightly, and the gas path fault is often difficult to distinguish. In order to solve this problem, based on the second law of thermodynamics, the endogenous irreversible loss (EIL) model of the marine gas turbine is established, and the exergy loss analysis under normal conditions is carried out to verify the accuracy of the model. The fault diagnosis of gas turbine gas path based on EIL is proposed, and a simulation experiment conducted on a three-shaft marine gas turbine demonstrated that the proposed approach can detect and isolate gas path fault accurately under different operating conditons and enviroments.

Suggested Citation

  • Yunpeng Cao & Junqi Luan & Guodong Han & Xinran Lv & Shuying Li, 2019. "A Marine Gas Turbine Fault Diagnosis Method Based on Endogenous Irreversible Loss," Energies, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4677-:d:295778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Lingen & Xiaoqin, Zhu & Sun, Fengrui & Wu, Chih, 2007. "Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump," Applied Energy, Elsevier, vol. 84(1), pages 78-88, January.
    2. Qingcai Yang & Shuying Li & Yunpeng Cao & Fengshou Gu & Ann Smith, 2018. "A Gas Path Fault Contribution Matrix for Marine Gas Turbine Diagnosis Based on a Multiple Model Fault Detection and Isolation Approach," Energies, MDPI, vol. 11(12), pages 1-21, November.
    3. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    4. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunpeng Cao & Xinran Lv & Guodong Han & Junqi Luan & Shuying Li, 2019. "Research on Gas-Path Fault-Diagnosis Method of Marine Gas Turbine Based on Exergy Loss and Probabilistic Neural Network," Energies, MDPI, vol. 12(24), pages 1-17, December.
    2. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    3. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    4. Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
    5. Jiao Liu & Jinfu Liu & Daren Yu & Myeongsu Kang & Weizhong Yan & Zhongqi Wang & Michael G. Pecht, 2018. "Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network," Energies, MDPI, vol. 11(8), pages 1-18, August.
    6. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    7. Nadir, Mahmoud & Ghenaiet, Adel, 2017. "Steam turbine injection generator performance estimation considering turbine blade cooling," Energy, Elsevier, vol. 132(C), pages 248-256.
    8. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    9. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    10. Xin Li & Fengrong Bi & Lipeng Zhang & Xiao Yang & Guichang Zhang, 2022. "An Engine Fault Detection Method Based on the Deep Echo State Network and Improved Multi-Verse Optimizer," Energies, MDPI, vol. 15(3), pages 1-17, February.
    11. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
    12. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    13. Kiki Ayu & Akilu Yunusa-Kaltungo, 2020. "A Holistic Framework for Supporting Maintenance and Asset Management Life Cycle Decisions for Power Systems," Energies, MDPI, vol. 13(8), pages 1-32, April.
    14. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    15. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    16. Ming Cheng & Qiang Zhang & Yue Cao, 2024. "An Early Warning Model for Turbine Intermediate-Stage Flux Failure Based on an Improved HEOA Algorithm Optimizing DMSE-GRU Model," Energies, MDPI, vol. 17(15), pages 1-16, July.
    17. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    18. Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
    19. Shun Dai & Xiaoyi Zhang & Mingyu Luo, 2024. "A Novel Data-Driven Approach for Predicting the Performance Degradation of a Gas Turbine," Energies, MDPI, vol. 17(4), pages 1-17, February.
    20. Jinfu Liu & Zhenhua Long & Mingliang Bai & Linhai Zhu & Daren Yu, 2021. "A Comparative Study on Fault Detection Methods for Gas Turbine Combustion Systems," Energies, MDPI, vol. 14(2), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4677-:d:295778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.