An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Feng Lu & Jinquan Huang & Yiqiu Lv, 2013. "Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach," Energies, MDPI, vol. 6(1), pages 1-22, January.
- Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.
- Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
- Salahshoor, Karim & Kordestani, Mojtaba & Khoshro, Majid S., 2010. "Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers," Energy, Elsevier, vol. 35(12), pages 5472-5482.
- Akram Khaleghei & Viliam Makis, 2015. "Model parameter estimation and residual life prediction for a partially observable failing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 190-205, April.
- Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yunpeng Cao & Xinran Lv & Guodong Han & Junqi Luan & Shuying Li, 2019. "Research on Gas-Path Fault-Diagnosis Method of Marine Gas Turbine Based on Exergy Loss and Probabilistic Neural Network," Energies, MDPI, vol. 12(24), pages 1-17, December.
- Sun, Rongzhuo & Shi, Licheng & Yang, Xilian & Wang, Yuzhang & Zhao, Qunfei, 2020. "A coupling diagnosis method of sensors faults in gas turbine control system," Energy, Elsevier, vol. 205(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feng Lu & Chunyu Jiang & Jinquan Huang & Yafan Wang & Chengxin You, 2016. "A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis," Energies, MDPI, vol. 9(10), pages 1-22, October.
- Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
- Valentina Zaccaria & Moksadur Rahman & Ioanna Aslanidou & Konstantinos Kyprianidis, 2019. "A Review of Information Fusion Methods for Gas Turbine Diagnostics," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
- Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
- Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
- Zijian Qiang & Jinquan Huang & Feng Lu & Xiaodong Chang, 2019. "Robust Sensor Fault Reconstruction via a Bank of Second-Order Sliding Mode Observers for Aircraft Engines," Energies, MDPI, vol. 12(14), pages 1-20, July.
- Pan Zheng & Wenqin Zhao & Yaqiong Lv & Lu Qian & Yifan Li, 2022. "Health Status-Based Predictive Maintenance Decision-Making via LSTM and Markov Decision Process," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
- Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
- Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
- Jiao Liu & Jinfu Liu & Daren Yu & Myeongsu Kang & Weizhong Yan & Zhongqi Wang & Michael G. Pecht, 2018. "Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network," Energies, MDPI, vol. 11(8), pages 1-18, August.
- Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
- Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
- Yunpeng Cao & Xinran Lv & Guodong Han & Junqi Luan & Shuying Li, 2019. "Research on Gas-Path Fault-Diagnosis Method of Marine Gas Turbine Based on Exergy Loss and Probabilistic Neural Network," Energies, MDPI, vol. 12(24), pages 1-17, December.
- Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
- Xin Li & Fengrong Bi & Lipeng Zhang & Xiao Yang & Guichang Zhang, 2022. "An Engine Fault Detection Method Based on the Deep Echo State Network and Improved Multi-Verse Optimizer," Energies, MDPI, vol. 15(3), pages 1-17, February.
- Kiki Ayu & Akilu Yunusa-Kaltungo, 2020. "A Holistic Framework for Supporting Maintenance and Asset Management Life Cycle Decisions for Power Systems," Energies, MDPI, vol. 13(8), pages 1-32, April.
- Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
- Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
- Ming Cheng & Qiang Zhang & Yue Cao, 2024. "An Early Warning Model for Turbine Intermediate-Stage Flux Failure Based on an Improved HEOA Algorithm Optimizing DMSE-GRU Model," Energies, MDPI, vol. 17(15), pages 1-16, July.
- Sun, Rongzhuo & Shi, Licheng & Yang, Xilian & Wang, Yuzhang & Zhao, Qunfei, 2020. "A coupling diagnosis method of sensors faults in gas turbine control system," Energy, Elsevier, vol. 205(C).
More about this item
Keywords
gas turbine; fault diagnosis; hidden Markov model; kernel principal component analysis; feature extraction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1807-:d:157265. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.