Comparison of different gas turbine cycles and advanced exergy analysis of the most effective
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.10.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Athari, Hassan & Soltani, Saeed & Bölükbaşi, Abdurrahim & Rosen, Marc A. & Morosuk, Tatiana, 2015. "Comparative exergoeconomic analyses of the integration of biomass gasification and a gas turbine power plant with and without fogging inlet cooling," Renewable Energy, Elsevier, vol. 76(C), pages 394-400.
- Zare, V. & Mahmoudi, S.M.S. & Yari, M., 2013. "An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle," Energy, Elsevier, vol. 61(C), pages 397-409.
- Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
- Tesch, Stefanie & Morosuk, Tatiana & Tsatsaronis, George, 2016. "Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process," Energy, Elsevier, vol. 117(P2), pages 550-561.
- Mehrpooya, Mehdi & Shafaei, Arash, 2016. "Advanced exergy analysis of novel flash based Helium recovery from natural gas processes," Energy, Elsevier, vol. 114(C), pages 64-83.
- Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
- Hassan Athari & Saeed Soltani & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Comparative Exergoeconomic Analyses of Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling," Sustainability, MDPI, vol. 7(9), pages 1-22, September.
- Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
- Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
- Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
- Morosuk, Tatiana & Tsatsaronis, George, 2008. "A new approach to the exergy analysis of absorption refrigeration machines," Energy, Elsevier, vol. 33(6), pages 890-907.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ferrari, Mario L. & Silvestri, Paolo & Reggio, Federico & Massardo, Aristide F., 2018. "Surge prevention for gas turbines connected with large volume size: Experimental demonstration with a microturbine," Applied Energy, Elsevier, vol. 230(C), pages 1057-1064.
- Yunpeng Cao & Junqi Luan & Guodong Han & Xinran Lv & Shuying Li, 2019. "A Marine Gas Turbine Fault Diagnosis Method Based on Endogenous Irreversible Loss," Energies, MDPI, vol. 12(24), pages 1-18, December.
- Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
- Milana Guteša Božo & Agustin Valera-Medina, 2020. "Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels," Energies, MDPI, vol. 13(21), pages 1-20, November.
- Zhang, Qing & Wang, Yuzhang & Jiang, Jiangjun & Weng, Shilie & Cao, Xiuling, 2022. "Coupling effect of key parameters of heat recovery components on the HAT cycle performance," Energy, Elsevier, vol. 238(PC).
- Ibrahim, Thamir k. & Mohammed, Mohammed Kamil & Awad, Omar I. & Rahman, M.M. & Najafi, G. & Basrawi, Firdaus & Abd Alla, Ahmed N. & Mamat, Rizalman, 2017. "The optimum performance of the combined cycle power plant: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 459-474.
- Sadeghi, Mohsen & Chitsaz, Ata & Marivani, Parisa & Yari, Mortaza & Mahmoudi, S.M.S., 2020. "Effects of thermophysical and thermochemical recuperation on the performance of combined gas turbine and organic rankine cycle power generation system: Thermoeconomic comparison and multi-objective op," Energy, Elsevier, vol. 210(C).
- Fallah, M. & Mahmoudi, S.M.S. & Yari, M., 2017. "Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell," Energy, Elsevier, vol. 141(C), pages 1097-1112.
- Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
- Mohammadi, Z. & Fallah, M. & Mahmoudi, S.M. Seyed, 2019. "Advanced exergy analysis of recompression supercritical CO2 cycle," Energy, Elsevier, vol. 178(C), pages 631-643.
- Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
- Liu, Zhongyan & Guan, Hongwei & Shao, Jiawei & Jin, Xu & Su, Wei & Zhang, Hao & Li, Heng & Sun, Dahan & Wei, Tengfei, 2024. "Thermodynamic and advanced exergy analysis of a trans-critical CO2 energy storage system integrated with heat supply and solar energy," Energy, Elsevier, vol. 302(C).
- Mohammadi, Zahra & Fallah, Mohsen, 2023. "Conventional and advanced exergy investigation of a double flash cycle integrated by absorption cooling, ORC, and TEG power system driven by geothermal energy," Energy, Elsevier, vol. 282(C).
- Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).
- Koroglu, Turgay & Sogut, Oguz Salim, 2018. "Conventional and advanced exergy analyses of a marine steam power plant," Energy, Elsevier, vol. 163(C), pages 392-403.
- Nadir, Mahmoud & Ghenaiet, Adel, 2017. "Steam turbine injection generator performance estimation considering turbine blade cooling," Energy, Elsevier, vol. 132(C), pages 248-256.
- Mossi Idrissa, A.K. & Goni Boulama, K., 2019. "Advanced exergy analysis of a combined Brayton/Brayton power cycle," Energy, Elsevier, vol. 166(C), pages 724-737.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
- Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
- Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
- Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
- Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
- Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Ren, Jingzheng & Ji, Feng & Sun, Yi & Xiao, Zhenyu & Yang, Sheng, 2021. "Conventional and advanced exergy analyses of a vehicular proton exchange membrane fuel cell power system," Energy, Elsevier, vol. 222(C).
- Soltani, S. & Yari, M. & Mahmoudi, S.M.S. & Morosuk, T. & Rosen, M.A., 2013. "Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit," Energy, Elsevier, vol. 59(C), pages 775-780.
- Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
- Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
- Esmaeil Jadidi & Mohammad Hasan Khoshgoftar Manesh & Mostafa Delpisheh & Viviani Caroline Onishi, 2021. "Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses of Integrated Solar-Assisted Gasification Cycle for Producing Power and Steam from Heavy Refinery Fuels," Energies, MDPI, vol. 14(24), pages 1-29, December.
- Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
- Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
- Salehzadeh, A. & Khoshbakhti Saray, R. & JalaliVahid, D., 2013. "Investigating the effect of several thermodynamic parameters on exergy destruction in components of a tri-generation cycle," Energy, Elsevier, vol. 52(C), pages 96-109.
- Yamankaradeniz, Nurettin, 2016. "Thermodynamic performance assessments of a district heating system with geothermal by using advanced exergy analysis," Renewable Energy, Elsevier, vol. 85(C), pages 965-972.
- Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
- Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
- Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
- Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
- Wu, Junnian & Wang, Na, 2020. "Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study," Energy, Elsevier, vol. 206(C).
- Balli, Ozgur & Aygun, Hakan & Turan, Onder, 2022. "Enhanced dynamic exergy analysis of a micro-jet (μ-jet) engine at various modes," Energy, Elsevier, vol. 239(PA).
More about this item
Keywords
Steam injection gas turbine; Air cooling; Evaporative cooling technique; Exergy; Advanced exergy analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:701-715. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.