IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4671-d295680.html
   My bibliography  Save this article

Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review

Author

Listed:
  • Oscar E. Medina

    (Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

  • Carol Olmos

    (Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

  • Sergio H. Lopera

    (Grupo de Yacimientos de Hidrocarburos, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Medellín 050034, Colombia)

  • Farid B. Cortés

    (Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

  • Camilo A. Franco

    (Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

Abstract

The increasing demand for fossil fuels and the depleting of light crude oil in the next years generates the need to exploit heavy and unconventional crude oils. To face this challenge, the oil and gas industry has chosen the implementation of new technologies capable of improving the efficiency in the enhanced recovery oil (EOR) processes. In this context, the incorporation of nanotechnology through the development of nanoparticles and nanofluids to increase the productivity of heavy and extra-heavy crude oils has taken significant importance, mainly through thermal enhanced oil recovery (TEOR) processes. The main objective of this paper is to provide an overview of nanotechnology applied to oil recovery technologies with a focus on thermal methods, elaborating on the upgrading of the heavy and extra-heavy crude oils using nanomaterials from laboratory studies to field trial proposals. In detail, the introduction section contains general information about EOR processes, their weaknesses, and strengths, as well as an overview that promotes the application of nanotechnology. Besides, this review addresses the physicochemical properties of heavy and extra-heavy crude oils in Section 2. The interaction of nanoparticles with heavy fractions such as asphaltenes and resins, as well as the variables that can influence the adsorptive phenomenon are presented in detail in Section 3. This section also includes the effects of nanoparticles on the other relevant mechanisms in TEOR methods, such as viscosity changes, wettability alteration, and interfacial tension reduction. The catalytic effect influenced by the nanoparticles in the different thermal recovery processes is described in Sections 4, 5, 6, and 7. Finally, Sections 8 and 9 involve the description of an implementation plan of nanotechnology for the steam injection process, environmental impacts, and recent trends. Additionally, the review proposes critical stages in order to obtain a successful application of nanoparticles in thermal oil recovery processes.

Suggested Citation

  • Oscar E. Medina & Carol Olmos & Sergio H. Lopera & Farid B. Cortés & Camilo A. Franco, 2019. "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, MDPI, vol. 12(24), pages 1-36, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4671-:d:295680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yasaman Assef & Pedro Pereira Almao, 2019. "Evaluation of Cyclic Gas Injection in Enhanced Recovery from Unconventional Light Oil Reservoirs: Effect of Gas Type and Fracture Spacing," Energies, MDPI, vol. 12(7), pages 1-24, April.
    2. Hashemi, Rohallah & Nassar, Nashaat N. & Pereira Almao, Pedro, 2014. "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, Elsevier, vol. 133(C), pages 374-387.
    3. Vladimir Alvarado & Eduardo Manrique, 2010. "Enhanced Oil Recovery: An Update Review," Energies, MDPI, vol. 3(9), pages 1-47, August.
    4. Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
    5. Abarasi Hart & Joseph Wood, 2018. "In Situ Catalytic Upgrading of Heavy Crude with CAPRI: Influence of Hydrogen on Catalyst Pore Plugging and Deactivation due to Coke," Energies, MDPI, vol. 11(3), pages 1-18, March.
    6. Daniel Montes & Wendy Orozco & Esteban A. Taborda & Camilo A. Franco & Farid B. Cortés, 2019. "Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils," Energies, MDPI, vol. 12(6), pages 1-21, March.
    7. Xiaofei Sun & Yanyu Zhang & Guangpeng Chen & Zhiyong Gai, 2017. "Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress," Energies, MDPI, vol. 10(3), pages 1-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar E. Medina & Yira Hurtado & Cristina Caro-Velez & Farid B. Cortés & Masoud Riazi & Sergio H. Lopera & Camilo A. Franco, 2019. "Improvement of Steam Injection Processes Through Nanotechnology: An Approach through in Situ Upgrading and Foam Injection," Energies, MDPI, vol. 12(24), pages 1-21, December.
    2. Jamil Fadi El-Masry & Kamel Fahmi Bou-Hamdan & Azza Hashim Abbas & Dmitriy A. Martyushev, 2023. "A Comprehensive Review on Utilizing Nanomaterials in Enhanced Oil Recovery Applications," Energies, MDPI, vol. 16(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
    2. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    3. Oscar E. Medina & Yira Hurtado & Cristina Caro-Velez & Farid B. Cortés & Masoud Riazi & Sergio H. Lopera & Camilo A. Franco, 2019. "Improvement of Steam Injection Processes Through Nanotechnology: An Approach through in Situ Upgrading and Foam Injection," Energies, MDPI, vol. 12(24), pages 1-21, December.
    4. Fasano, Matteo & Morciano, Matteo & Bergamasco, Luca & Chiavazzo, Eliodoro & Zampato, Massimo & Carminati, Stefano & Asinari, Pietro, 2021. "Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery," Applied Energy, Elsevier, vol. 304(C).
    5. Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.
    6. Hugo Alejandro García-Duarte & María Carolina Ruiz-Cañas & Romel Antonio Pérez-Romero, 2022. "Innovative Experimental Design for the Evaluation of Nanofluid-Based Solvent as a Hybrid Technology for Optimizing Cyclic Steam Stimulation Applications," Energies, MDPI, vol. 16(1), pages 1-21, December.
    7. Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
    8. Huoxin Luan & Zhaohui Zhou & Chongjun Xu & Lei Bai & Xiaoguang Wang & Lu Han & Qun Zhang & Gen Li, 2022. "Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic–Anionic Surfactant for Enhanced Oil Recovery," Energies, MDPI, vol. 15(3), pages 1-12, February.
    9. Xiankang Xin & Yiqiang Li & Gaoming Yu & Weiying Wang & Zhongzhi Zhang & Maolin Zhang & Wenli Ke & Debin Kong & Keliu Wu & Zhangxin Chen, 2017. "Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies," Energies, MDPI, vol. 10(11), pages 1-25, October.
    10. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    11. Pan, Xuwei & Wu, Yan & Li, Tingzhen & Lan, Guoxin & Shen, Jia & Yu, Yue & Xue, Ping & Chen, Dan & Wang, Maoqing & Fu, Chuan, 2023. "A study of co-pyrolysis of sewage sludge and rice husk for syngas production based on a cyclic catalytic integrated process system," Renewable Energy, Elsevier, vol. 215(C).
    12. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    13. Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
    14. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    15. Tariq Ali Chandio & Muhammad A. Manan & Khalil Rehman Memon & Ghulam Abbas & Ghazanfer Raza Abbasi, 2021. "Enhanced Oil Recovery by Hydrophilic Silica Nanofluid: Experimental Evaluation of the Impact of Parameters and Mechanisms on Recovery Potential," Energies, MDPI, vol. 14(18), pages 1-19, September.
    16. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    17. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    18. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    19. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    20. Jun Pu & Xuejie Qin & Feifei Gou & Wenchao Fang & Fengjie Peng & Runxi Wang & Zhaoli Guo, 2018. "Molecular Modeling of CO 2 and n -Octane in Solubility Process and α -Quartz Nanoslit," Energies, MDPI, vol. 11(11), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4671-:d:295680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.