IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp1190-1211.html
   My bibliography  Save this article

Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection

Author

Listed:
  • Dong, Xiaohu
  • Liu, Huiqing
  • Chen, Zhangxin
  • Wu, Keliu
  • Lu, Ning
  • Zhang, Qichen

Abstract

The in-situ steam-based technology is still the main exploitation method for heavy oil and oilsands resources all over the world. But currently most of the steam-based processes (e.g., cyclic steam stimulation (CSS), steam flooding and steam assisted gravity drainage (SAGD)) in heavy oilfields have entered into an exhaustion stage. Considering long-lasting steam-rock interactions, how to further enhance the heavy oil and bitumen recovery in the post steam injection era is currently challenging. In this paper, we present a comprehensive and critical review of the enhanced oil recovery (EOR) processes in the post steam injection era in both experimental and field cases. Specifically, the paper presents an overview on the recovery mechanisms and field performance of thermal EOR processes by reservoir lithology (sandstone and carbonate formations) and offshore versus onshore oilfields. Typical processes include an in-situ combustion process, a thermal-solvent process, a thermal-NCG (non-condensable gas, e.g., N2, flue gas and air) process, and a thermal-chemical (e.g., polymer, surfactant, gel and foam) process. Some other processes and new processes are also presented in this work. This review shows that offshore heavy oilfields will be the future exploitation focus. Moreover, currently several steam-based projects and thermal-NCG projects have been operated in Emeraude Field in Congo and Bohai Bay in China. A growing trend is also found for an in-situ combustion process and a solvent assisted process in both offshore and onshore heavy oilfields, such as EOR projects in North America, North Sea, Bohai Bay and Xinjiang. The multicomponent thermal fluids injection process in offshore and the thermal-CO2 and thermal-chemical (surfactant and foam) processes in onshore heavy oil reservoirs are some of the opportunities identified for the next decade based on preliminary evaluations and proposed or ongoing pilot projects. Furthermore, the new processes of an electrical method, in-situ upgrading (e.g., ionic liquids, addition of catalyst and steam-nanoparticles) and novel wellbore configurations have also gained some attention. We point out that there are some newly proposed recovery techniques that are still limited to a laboratory scale study, with the need for further investigations. In such a time of low oil prices, cost optimization will be the top priority for all the oil companies in the world. This critical review will help them identify the next challenges and opportunities in the EOR potential of heavy oil and bitumen production in the post steam injection era.

Suggested Citation

  • Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1190-1211
    DOI: 10.1016/j.apenergy.2019.01.244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacchetta, Giancarlo & Leporini, Mariella & Marchetti, Barbara, 2015. "Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands," Applied Energy, Elsevier, vol. 142(C), pages 1-9.
    2. Bera, Achinta & Babadagli, Tayfun, 2015. "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review," Applied Energy, Elsevier, vol. 151(C), pages 206-226.
    3. Jun Ni & Xiang Zhou & Qingwang Yuan & Xinqian Lu & Fanhua Zeng & Keliu Wu, 2017. "Numerical Simulation Study on Steam-Assisted Gravity Drainage Performance in a Heavy Oil Reservoir with a Bottom Water Zone," Energies, MDPI, vol. 10(12), pages 1-24, December.
    4. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    5. Catania, Peter, 2000. "Predicted and actual productions of horizontal wells in heavy-oil fields," Applied Energy, Elsevier, vol. 65(1-4), pages 29-43, April.
    6. Hashemi, Rohallah & Nassar, Nashaat N. & Pereira Almao, Pedro, 2014. "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, Elsevier, vol. 133(C), pages 374-387.
    7. Vladimir Alvarado & Eduardo Manrique, 2010. "Enhanced Oil Recovery: An Update Review," Energies, MDPI, vol. 3(9), pages 1-47, August.
    8. Pang, Zhan-xi & Wu, Zheng-bin & Zhao, Meng, 2017. "A novel method to calculate consumption of non-condensate gas during steam assistant gravity drainage in heavy oil reservoirs," Energy, Elsevier, vol. 130(C), pages 76-85.
    9. Wang, Jingfan & O'Donnell, John & Brandt, Adam R., 2017. "Potential solar energy use in the global petroleum sector," Energy, Elsevier, vol. 118(C), pages 884-892.
    10. Khalil, Munawar & Jan, Badrul Mohamed & Tong, Chong Wen & Berawi, Mohammed Ali, 2017. "Advanced nanomaterials in oil and gas industry: Design, application and challenges," Applied Energy, Elsevier, vol. 191(C), pages 287-310.
    11. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    12. Ajumobi, Oluwole O. & Muraza, Oki & Kondoh, Hisaki & Hasegawa, Natsumi & Nakasaka, Yuta & Yoshikawa, Takuya & Al Amer, Adnan M. & Masuda, Takao, 2018. "Upgrading oil sand bitumen under superheated steam over ceria-based nanocomposite catalysts," Applied Energy, Elsevier, vol. 218(C), pages 1-9.
    13. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    14. Afsar, Cansu & Akin, Serhat, 2016. "Solar generated steam injection in heavy oil reservoirs: A case study," Renewable Energy, Elsevier, vol. 91(C), pages 83-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    2. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).
    3. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    4. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    5. Cheng, Linsong & Liu, Hao & Huang, Shijun & Wu, Keliu & Chen, Xiao & Wang, Daigang & Xiong, Hao, 2018. "Environmental and economic benefits of Solvent-Assisted Steam-Gravity Drainage for bitumen through horizontal well: A comprehensive modeling analysis," Energy, Elsevier, vol. 164(C), pages 418-431.
    6. Xia, Wenjie & Shen, Weijun & Yu, Li & Zheng, Chenggang & Yu, Weichu & Tang, Yongchun, 2016. "Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir," Applied Energy, Elsevier, vol. 171(C), pages 646-655.
    7. Huang, Chang & Hou, Hongjuan & Yu, Gang & Zhang, Le & Hu, Eric, 2020. "Energy solutions for producing shale oil: Characteristics of energy demand and economic analysis of energy supply options," Energy, Elsevier, vol. 192(C).
    8. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    9. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    10. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    11. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    12. Ahmadi, Mohammadali & Hou, Qingfeng & Wang, Yuanyuan & Lei, Xuantong & Liu, Benjieming & Chen, Zhangxin, 2023. "Spotlight on reversible emulsification and demulsification of tetradecane-water mixtures using CO2/N2 switchable surfactants: Molecular dynamics (MD) simulation," Energy, Elsevier, vol. 279(C).
    13. Zhao, Renbao & Yu, Shuai & Yang, Jie & Heng, Minghao & Zhang, Chunhui & Wu, Yahong & Zhang, Jianhua & Yue, Xiang-an, 2018. "Optimization of well spacing to achieve a stable combustion during the THAI process," Energy, Elsevier, vol. 151(C), pages 467-477.
    14. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    15. Baghernezhad, Danial & Siavashi, Majid & Nakhaee, Ali, 2019. "Optimal scenario design of steam-assisted gravity drainage to enhance oil recovery with temperature and rate control," Energy, Elsevier, vol. 166(C), pages 610-623.
    16. Soiket, Md.I.H. & Oni, A.O. & Gemechu, E.D. & Kumar, A., 2019. "Life cycle assessment of greenhouse gas emissions of upgrading and refining bitumen from the solvent extraction process," Applied Energy, Elsevier, vol. 240(C), pages 236-250.
    17. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Ma, Xinhua & Zhu, Weiping & Zheng, Tianyu & Wu, Keliu & Zhang, Kun & Ma, Kuiyou, 2020. "Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins," Applied Energy, Elsevier, vol. 261(C).
    18. Druetta, P. & Raffa, P. & Picchioni, F., 2019. "Chemical enhanced oil recovery and the role of chemical product design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Oscar E. Medina & Carol Olmos & Sergio H. Lopera & Farid B. Cortés & Camilo A. Franco, 2019. "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, MDPI, vol. 12(24), pages 1-36, December.
    20. Zhang, Qitao & Liu, Wenchao & Dahi Taleghani, Arash, 2022. "Numerical study on non-Newtonian Bingham fluid flow in development of heavy oil reservoirs using radiofrequency heating method," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1190-1211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.