IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4491-d290788.html
   My bibliography  Save this article

A Graph Theory-Based Method for Regional Integrated Energy Network Planning: A Case Study of a China–U.S. Low-Carbon Demonstration City

Author

Listed:
  • Yingying Chen

    (School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui, China)

  • Jian Zhu

    (School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui, China)

Abstract

With the significant attention on global climate change, regional integrated energy systems (RIES) in low-carbon city planning has become one of the most important ways for global cities to achieve the goal of energy conservation and emission reduction. However, the planning strategy used in the primary stage of RIES establishment will greatly affect the system economy and environment. In view of the lack of planning guidance mechanisms for the large-scale RIES in China, a method for RIES preliminary overall planning, focused on energy types and use, is proposed in this paper. A graph theory-based mathematical optimal model was established with the lifetime costs of the whole system as the economic goal, and an improved Prim algorithm was put forward to solve the costs of the transmission and distribution network with the dynamic weight set of pipeline flow. The model was solved by an algorithm based on the idea of a dynamic minimum spanning tree and optimal path planning. The model and method were applied in a China–U.S. low-carbon demonstration city to verify feasibility and validity. The results could help us to comprehensively integrate regional energy and accurately plan future cities.

Suggested Citation

  • Yingying Chen & Jian Zhu, 2019. "A Graph Theory-Based Method for Regional Integrated Energy Network Planning: A Case Study of a China–U.S. Low-Carbon Demonstration City," Energies, MDPI, vol. 12(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4491-:d:290788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kauko, Hanne & Kvalsvik, Karoline Husevåg & Rohde, Daniel & Nord, Natasa & Utne, Åmund, 2018. "Dynamic modeling of local district heating grids with prosumers: A case study for Norway," Energy, Elsevier, vol. 151(C), pages 261-271.
    2. Thomas T. D. Tran & Amanda D. Smith, 2019. "Stochastic Optimization for Integration of Renewable Energy Technologies in District Energy Systems for Cost-Effective Use," Energies, MDPI, vol. 12(3), pages 1-26, February.
    3. Dongmei Zhao & Xuan Xia & Ran Tao, 2019. "Optimal Configuration of Electric-Gas-Thermal Multi-Energy Storage System for Regional Integrated Energy System," Energies, MDPI, vol. 12(13), pages 1-22, July.
    4. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    5. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    6. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    7. Bordin, Chiara & Gordini, Angelo & Vigo, Daniele, 2016. "An optimization approach for district heating strategic network design," European Journal of Operational Research, Elsevier, vol. 252(1), pages 296-307.
    8. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
    9. Kristina Lygnerud, 2019. "Business Model Changes in District Heating: The Impact of the Technology Shift from the Third to the Fourth Generation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    10. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "EU Carbon Emissions Market Development and Its Impact on Penetration of Renewables in the Power Sector," Energies, MDPI, vol. 12(15), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rok Gomilšek & Lidija Čuček & Marko Homšak & Raymond R. Tan & Zdravko Kravanja, 2020. "Carbon Emissions Constrained Energy Planning for Aluminum Products," Energies, MDPI, vol. 13(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Lingqi & Nie, Ting & On Ho, Chi & Yang, Zheng & Calvez, Philippe & Jain, Rishee K. & Schwegler, Ben, 2022. "Optimizing pipe network design and central plant positioning of district heating and cooling System: A Graph-Based Multi-Objective genetic algorithm approach," Applied Energy, Elsevier, vol. 325(C).
    2. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    3. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    4. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    5. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.
    6. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.
    7. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    8. Pakere, Ieva & Gravelsins, Armands & Lauka, Dace & Bazbauers, Gatis & Blumberga, Dagnija, 2021. "Linking energy efficiency policies toward 4th generation district heating system," Energy, Elsevier, vol. 234(C).
    9. Sommer, Tobias & Sulzer, Matthias & Wetter, Michael & Sotnikov, Artem & Mennel, Stefan & Stettler, Christoph, 2020. "The reservoir network: A new network topology for district heating and cooling," Energy, Elsevier, vol. 199(C).
    10. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    11. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).
    12. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    13. Rabah Ismaen & Tarek Y. ElMekkawy & Shaligram Pokharel & Adel Elomri & Mohammed Al-Salem, 2022. "Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection," Energies, MDPI, vol. 15(7), pages 1-24, April.
    14. Chima Cyril Hampo & Ainul Bt Akmar & Mohd Amin Abd Majid, 2021. "Life Cycle Assessment of an Electric Chiller Integrated with a Large District Cooling Plant," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
    15. Xu, Han & Zhang, Lu & Wang, Xuanbo & Han, Baocheng & Luo, Zhengyuan & Bai, Bofeng, 2024. "Improved genetic algorithm for pipe diameter optimization of an existing large-scale district heating network," Energy, Elsevier, vol. 304(C).
    16. Pardo-Bosch, Francesc & Blanco, Ana & Mendoza, Nora & Libreros, Bibiana & Tejedor, Blanca & Pujadas, Pablo, 2023. "Sustainable deployment of energy efficient district heating: city business model," Energy Policy, Elsevier, vol. 181(C).
    17. Zhang, Wei & Hong, Wenpeng & Jin, Xu, 2022. "Research on performance and control strategy of multi-cold source district cooling system," Energy, Elsevier, vol. 239(PB).
    18. Best, Robert E. & Rezazadeh Kalehbasti, P. & Lepech, Michael D., 2020. "A novel approach to district heating and cooling network design based on life cycle cost optimization," Energy, Elsevier, vol. 194(C).
    19. Qiao, Sen & Guo, Zi Xin & Tao, Zhang & Ren, Zheng Yu, 2023. "Analyzing the network structure of risk transmission among renewable, non-renewable energy and carbon markets," Renewable Energy, Elsevier, vol. 209(C), pages 206-217.
    20. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4491-:d:290788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.